Antioxidant Enzymes Activities of Walnut Nursery Trees to Drought Stress Progression
Year 2021,
Volume: 5 Issue: 2, 217 - 225, 28.12.2021
Fatma Yıldırım
,
Meltem Esen
,
Selçuk Binici
,
Civan Çelik
,
Adnan Yıldırım
,
Yaşar Karakurt
Abstract
This research was carried out to determine the biochemical responses of Chandler and Fernor walnut cultivars saplings grafted on the Juglans regia seedling rootstock under water stress in 2020. In accordance with this purpose; three different irrigation levels were applied to the one-year-old seedlings in polyethylene tubes in the greenhouse for three months: 1) full irrigation as control (100% of potted field capacity (PFC)) and 2) two different levels of restricted water application (50 and 25% of PFC). The amount of decreasing water was provided every 5 days. The antioxidant enzyme activities including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) in the leaves were determined every 15 days. In terms of the properties examined, statistically significant differences were found between the applications in the all analysis periods. In general, as the severity and duration of the water stress increased, the antioxidant enzyme activities gradually increased and while the highest values were determined in the 25% PFC application, the lowest values were determined in the 100% PFC control application.
As a result, the walnut saplings developed antioxidant defense mechanisms against water stress, demonstrating a possible tolerance. This suggests that the tolerance may be due to the activation of antioxidant systems and the reduction of oxidative damage. It has been determined that the antioxidant enzyme activities have different tendencies for both cultivars in response to the oxidative damage. While POD and CAT activities were at the higher levels in the Chandler cultivar; SOD and APX activities were at the higher levels in the Fernor cultivar.
Supporting Institution
TÜBİTAK
Thanks
This project was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with the number 119O806. We would like to thank TÜBİTAK. Also we would like to thank Prof. Dr. Yusuf UÇAR assiting in the calculation and application of irrigation water levels in the study.
References
- Akıncı, Ş., & Lösel, D. M. (2012). Plant Water-Stress Response Mechanisms. Water Stress, 15-42.
- Anonymous, (2020a). Meyvecilik Araştırma Enstitüsü Müdürlüğü Tarımsal Analiz Laboratuvarı Toprak Analiz Raporu (Eğirdir/Isparta). Protokol No: T20 413
- Anonymous, (2020b). Eğirdir Meyvecilik Araştırma Enstitüsü Müdürlüğü Tarımsal Analiz Laboratuvarı Su Analiz Raporu (Eğirdir/Isparta). Protokol No: S20-50
- Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., & Man, C., (2011). Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. African Journal of Agricultural Research, 6(9): 2026-2032. https://doi.org/10.5897/AJAR10.027
Ashraf, M., Foolad, M. R. (2007). Roles of Glycine Betaine and Proline in İmproving Plant Abiotic Stress Resistance. Environmental and Experimental Botany, 59(2): 206-2016. https://doi.org/10.1016/j.envexpbot.2005.12.006
- Babalik, Z. (2012). Tuz ve Su Stresinin Asmaların Bazı Fiziksel ve Biyokimyasal Özellikleri Üzerine Etkileri. Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye.
- Beers, R. F., & Sizer, I. W. (1952). A Spectrophotometric Method for Measuring The Breakdown of Hydrogen Peroxide by Catalase. Journal of Biological Chemistry, 195(1): 133-140.
- Bolat, I., Dikilitas, M., Ercisli, S., Ikinci, A., & Tonkaz, T. (2014). The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks. The Scientific World Journal, (8). https://doi.org/10.1155/2014/769732
- Buyuk, İ., Soydam-Aydın, S., & Aras, S. (2012). Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Turkish Bulletin of Hygiene and Experimental Biology, 69(2): 97-110.
- Cohen, M., Ameglio, T., Cruiziat, P., Archer, P., & Valancogne, C. (1997). Yield and Physiological Responses of Walnut Trees in Semi-Arid Conditions: Application to İrrigation Scheduling. Acta Horticulturae, 449: 273-280. https://doi.org/10.17660/ActaHortic.1997.449.39
- DaPei, L., ShengPing, L., XiangQian, G., TingTing, Z., FangFang, Z., & GuiYan, Y. (2018). Physiological Evaluation of Response of 'Ziren' Walnut from Ankang under Drought Stress. Journal of Southwest Forestry University, 38(1): 202-206.
- Faaek, M. F. F. (2018). Bazı Çilek Çeşitlerinde Kuraklık Stresinin Etkileri. Yüksek Lisans Tezi Selçuk Üniversitesi, Konya, Türkiye, 83s.
- Farajzadeh, E., Valizadeh, M., Shakiba, M., Ghaffari, M., & Moharramnejad, S. (2017). Relationship between Antioxidant Enzyme Activites and Agro-Physiological Traits in Sunflower Lines under Field Water Deficit Stress. Fresenıus Environmental Bulletin, 26(4): 2973-2981.
- Gur, İ. (2018). Su Stresi Uygulamalarının Bazı Armut Anaçlarında Morfolojik ve Biyokimyasal Değişimlere Etkisi. Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 149s.
- Gokmen, E. (2011). Nohut Genotiplerin Kuraklık Stresine Karşı Gösterdikleri Bazı Fizyolojik ve Biyokimyasal Tepkilerin Belirlenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 51s.
- Hassan, F. A. S., Ali, E. F., & Alamer, K. H. (2018). Exogenous Application of Polyamines Alleviates Water Stress-İnduced Oxidative Stress of Rosa damascena miller var. South African Journal of Botany, 116: 96-102. https://doi.org/10.1016/j.sajb.2018.02.399
- Hui, J., Muge, Q., Rigen, L., Xueqin, H., & Meilian, M. (2016). Sodium Nitroprusside Role on Antioxidant Enzymes Activities in Leaves of Different Potato Cultivars under Drought Stress. Acta Botanica Boreali-Occidentalia Sinica, 36(3): 551-557.
- Ilyas, M., Nisar, M., Khan, N., Hazrat, A., & Khan, A. H. (2020). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 40(3): 926-944.
- Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C Treatment on Antioxidant Capacity, Antioxidant Enzyme Activity and Texture of Postharvest Shiitake (Lentinus edodes) Mushrooms during Storage. Postharvest Biology and Technology, 56(3): 209-215. https://doi.org/10.1016/j.postharvbio.2010.01.011
- JiMing, L., XiaoPeng, Z., XiaoFeng, L., DongKai, Z., & GuoHua, Y. (2012). Study on Protective Enzyme System and MDA Content of Juglans regia L. Journal of Henan Agricultural Sciences, 41(9): 122-126.
- Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., & Salami, S. A. (2019). Morphological, Physiochemical and Antioxidant Responses of Maclura pomifera to Drought Stress. Scientific Reports, 9(1): 1-12.
- Lotfi, N., Vahdati, K., Hassani, D., Kholdebarin, B., & Amiri, R. (2010). Peroxidase, Guaiacol Peroxidase and Ascorbate Peroxidase Activity Accumulation in Leaves and Roots of Walnut Trees in Response to Drought Stress. Acta Horticulturae, 861: 309-316. https://doi.org/10.17660/ActaHortic.2010.861.42
- Lotfi, N., Soleimani, A., Vahdati, K., & Çakmakçı, R. (2019). Comprehensive Biochemical İnsights into The Seed Germination of Walnut under Drought Stress. Scientia Horticulturae, 250(2019) 329–343. https://doi.org/10.1016/j.scienta.2019.02.060
- Li, L., Shuaijie, S., Xiaomei, F., Lizhi, Y., & Shanlu, S. (2017). Protection Enzymes and Lipid Peroxidation in Phyllostachys Edulis Seedlings with Temperature and Water Stresses. Journal of Zhejiang A&F University, 34(2): 268-275.
- Liu, B., Lianga, J., Tangc, G., Wanga, X., & Liua, F. (2019). Drought Stress Affects on Growth, Water use Efficiency, Gas Exchange and Chlorophyll Fluorescence of Juglans Rootstocks. Scientia Horticulturae, 250: 230–235. https://doi.org/10.1016/j.scienta.2019.02.056
- Marcin´ska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., & Grzesiak, S. (2013). Impact of Osmotic Stress on Physiological and Biochemical Characteristics in Drought-Susceptible and Drought-Resistant Wheat Genotypes. Acta Physiology Plant, 35: 451–461. https://doi.org/10.1007/s11738-012-1088-6
- Nakano, Y., & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5): 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Oliveira, A. B., Alencar, N. L. M., & Gomes-Filho, E. (2013). Comparison between The Water and Salt Stress Effects on Plant Growth and Development. Responses of Organisms to Water Stress, 67. https://dx.doi.org/10.5772/54223
- Popović, B. M., Štajner, D., Ždero-Pavlović, R., & Tari, I., & Csiszár, J. (2017). Biochemical Response of Hybrid Black Poplar Tissue Culture (Populus × Canadensis) on Water Stress. Journal of Plant Research, 130(3): 559-570. https://doi.org/10.1007/s10265-017-0918-4
- RenJu, D., Yang, L., XianHao, Z., TianJiu, H., & JianMei, P. (2017). Effects of Persistence Drought on Growth and Physiological Characteristics of Potato Seedlings. Southwest China Journal of Agricultural Sciences, 30(2): 291-295.
- Shahzad, M. A., Jan, S. U., Afzal, F., Khalid, M., Gul, A. (2016). Drought Stress and Morphophysiological Responses in Plants. Water Stress and Crop Plants: A Sustainable Approach, 2: 452-467. https://doi.org/10.1002/9781119054450.ch27
- Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 1-26. https://doi.org/10.1155/2012/217037
- Selmi, A., Debaya, H., Triki, T., & Ferchichi, A. (2017). Effect of Water Deficiency on The Cellular Status and Antioxidant Defences in Anthyllis Sericea, A Saharian Plant. Pakistan Journal of Botany, 49(4): 1231-1237.
- Smedley, T. (2017). Dünyada Tatlı Su Kaynakları Tükeniyor Mu? BBC Future-Dergi. https://www.bbc.com/turkce/vert-fut-39646356 Son erişim tarihi: 26.06.2019
- Soni, A., Kumari, P., Dhakar, S., & Kumaar, N. (2017). Mechanisms and Strategies for İmproving drought Tolerance in Fruit Crops. Chemical Science Review and Letters, 6(23): 1537-1543
- Sen, S. M. (2011). Ceviz Yetiştiriciliği, Besin Değeri, Folklorü. ÜÇM Yayıncılık.
- Simsek, H., Akça, Y., Ünlükara, A., & Çekiç, Ç. (2017). Şebin Ceviz Çeşidinin Stres Koşullarına Dayanımının Belirlenmesi. Gaziosmapaşa Üniversitesi Ziraat Fakültesi Dergisi, 34: 141-150. https://doi.org/10.13002/jafag4416
- Tiryaki, T. (2018). Su Stresinin Yağ Gülü (Rosa daınascena Mili.) Fidanlarında Morfolojik ve Biyokimyasal Özellikler Üzerine Etkisi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, 91s.
- Vahdati, K., Lofti, N. (2013). Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. Abiotic Stress. Plant Responses and Applications in Agriculture, 10, 307-365. https://doi.org/10.5772/56078
- Vahdati, K. (2014). Walnut Tolerance to Abiotic Stresses: Approaches and Prospects. VIIth International Walnut Symposium, Acta Horticulturae, 1050: 399-406. https://doi.org/10.17660/ActaHortic.2014.1050.56
- Zhu, Y., Luo, X., Nawaz, G., Yin, J., & Yang, J. (2020). Physiological and Biochemical Responses of Four Cassava Cultivars to Drought Stress. Scientific Reports, 10(1): 1-12.
Year 2021,
Volume: 5 Issue: 2, 217 - 225, 28.12.2021
Fatma Yıldırım
,
Meltem Esen
,
Selçuk Binici
,
Civan Çelik
,
Adnan Yıldırım
,
Yaşar Karakurt
References
- Akıncı, Ş., & Lösel, D. M. (2012). Plant Water-Stress Response Mechanisms. Water Stress, 15-42.
- Anonymous, (2020a). Meyvecilik Araştırma Enstitüsü Müdürlüğü Tarımsal Analiz Laboratuvarı Toprak Analiz Raporu (Eğirdir/Isparta). Protokol No: T20 413
- Anonymous, (2020b). Eğirdir Meyvecilik Araştırma Enstitüsü Müdürlüğü Tarımsal Analiz Laboratuvarı Su Analiz Raporu (Eğirdir/Isparta). Protokol No: S20-50
- Anjum, S. A., Xie, X. Y., Wang, L. C., Saleem, M. F., & Man, C., (2011). Morphological, Physiological and Biochemical Responses of Plants to Drought Stress. African Journal of Agricultural Research, 6(9): 2026-2032. https://doi.org/10.5897/AJAR10.027
Ashraf, M., Foolad, M. R. (2007). Roles of Glycine Betaine and Proline in İmproving Plant Abiotic Stress Resistance. Environmental and Experimental Botany, 59(2): 206-2016. https://doi.org/10.1016/j.envexpbot.2005.12.006
- Babalik, Z. (2012). Tuz ve Su Stresinin Asmaların Bazı Fiziksel ve Biyokimyasal Özellikleri Üzerine Etkileri. Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye.
- Beers, R. F., & Sizer, I. W. (1952). A Spectrophotometric Method for Measuring The Breakdown of Hydrogen Peroxide by Catalase. Journal of Biological Chemistry, 195(1): 133-140.
- Bolat, I., Dikilitas, M., Ercisli, S., Ikinci, A., & Tonkaz, T. (2014). The Effect of Water Stress on Some Morphological, Physiological, and Biochemical Characteristics and Bud Success on Apple and Quince Rootstocks. The Scientific World Journal, (8). https://doi.org/10.1155/2014/769732
- Buyuk, İ., Soydam-Aydın, S., & Aras, S. (2012). Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Turkish Bulletin of Hygiene and Experimental Biology, 69(2): 97-110.
- Cohen, M., Ameglio, T., Cruiziat, P., Archer, P., & Valancogne, C. (1997). Yield and Physiological Responses of Walnut Trees in Semi-Arid Conditions: Application to İrrigation Scheduling. Acta Horticulturae, 449: 273-280. https://doi.org/10.17660/ActaHortic.1997.449.39
- DaPei, L., ShengPing, L., XiangQian, G., TingTing, Z., FangFang, Z., & GuiYan, Y. (2018). Physiological Evaluation of Response of 'Ziren' Walnut from Ankang under Drought Stress. Journal of Southwest Forestry University, 38(1): 202-206.
- Faaek, M. F. F. (2018). Bazı Çilek Çeşitlerinde Kuraklık Stresinin Etkileri. Yüksek Lisans Tezi Selçuk Üniversitesi, Konya, Türkiye, 83s.
- Farajzadeh, E., Valizadeh, M., Shakiba, M., Ghaffari, M., & Moharramnejad, S. (2017). Relationship between Antioxidant Enzyme Activites and Agro-Physiological Traits in Sunflower Lines under Field Water Deficit Stress. Fresenıus Environmental Bulletin, 26(4): 2973-2981.
- Gur, İ. (2018). Su Stresi Uygulamalarının Bazı Armut Anaçlarında Morfolojik ve Biyokimyasal Değişimlere Etkisi. Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta, Türkiye, 149s.
- Gokmen, E. (2011). Nohut Genotiplerin Kuraklık Stresine Karşı Gösterdikleri Bazı Fizyolojik ve Biyokimyasal Tepkilerin Belirlenmesi. Yüksek Lisans Tezi, Selçuk Üniversitesi, Konya, Türkiye, 51s.
- Hassan, F. A. S., Ali, E. F., & Alamer, K. H. (2018). Exogenous Application of Polyamines Alleviates Water Stress-İnduced Oxidative Stress of Rosa damascena miller var. South African Journal of Botany, 116: 96-102. https://doi.org/10.1016/j.sajb.2018.02.399
- Hui, J., Muge, Q., Rigen, L., Xueqin, H., & Meilian, M. (2016). Sodium Nitroprusside Role on Antioxidant Enzymes Activities in Leaves of Different Potato Cultivars under Drought Stress. Acta Botanica Boreali-Occidentalia Sinica, 36(3): 551-557.
- Ilyas, M., Nisar, M., Khan, N., Hazrat, A., & Khan, A. H. (2020). Drought Tolerance Strategies in Plants: A Mechanistic Approach. Journal of Plant Growth Regulation, 40(3): 926-944.
- Jiang, T., Jahangir, M. M., Jiang, Z., Lu, X., & Ying, T. (2010). Influence of UV-C Treatment on Antioxidant Capacity, Antioxidant Enzyme Activity and Texture of Postharvest Shiitake (Lentinus edodes) Mushrooms during Storage. Postharvest Biology and Technology, 56(3): 209-215. https://doi.org/10.1016/j.postharvbio.2010.01.011
- JiMing, L., XiaoPeng, Z., XiaoFeng, L., DongKai, Z., & GuoHua, Y. (2012). Study on Protective Enzyme System and MDA Content of Juglans regia L. Journal of Henan Agricultural Sciences, 41(9): 122-126.
- Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., & Salami, S. A. (2019). Morphological, Physiochemical and Antioxidant Responses of Maclura pomifera to Drought Stress. Scientific Reports, 9(1): 1-12.
- Lotfi, N., Vahdati, K., Hassani, D., Kholdebarin, B., & Amiri, R. (2010). Peroxidase, Guaiacol Peroxidase and Ascorbate Peroxidase Activity Accumulation in Leaves and Roots of Walnut Trees in Response to Drought Stress. Acta Horticulturae, 861: 309-316. https://doi.org/10.17660/ActaHortic.2010.861.42
- Lotfi, N., Soleimani, A., Vahdati, K., & Çakmakçı, R. (2019). Comprehensive Biochemical İnsights into The Seed Germination of Walnut under Drought Stress. Scientia Horticulturae, 250(2019) 329–343. https://doi.org/10.1016/j.scienta.2019.02.060
- Li, L., Shuaijie, S., Xiaomei, F., Lizhi, Y., & Shanlu, S. (2017). Protection Enzymes and Lipid Peroxidation in Phyllostachys Edulis Seedlings with Temperature and Water Stresses. Journal of Zhejiang A&F University, 34(2): 268-275.
- Liu, B., Lianga, J., Tangc, G., Wanga, X., & Liua, F. (2019). Drought Stress Affects on Growth, Water use Efficiency, Gas Exchange and Chlorophyll Fluorescence of Juglans Rootstocks. Scientia Horticulturae, 250: 230–235. https://doi.org/10.1016/j.scienta.2019.02.056
- Marcin´ska, I., Czyczyło-Mysza, I., Skrzypek, E., Filek, M., & Grzesiak, S. (2013). Impact of Osmotic Stress on Physiological and Biochemical Characteristics in Drought-Susceptible and Drought-Resistant Wheat Genotypes. Acta Physiology Plant, 35: 451–461. https://doi.org/10.1007/s11738-012-1088-6
- Nakano, Y., & Asada, K. (1981). Hydrogen Peroxide is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant and Cell Physiology, 22(5): 867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
- Oliveira, A. B., Alencar, N. L. M., & Gomes-Filho, E. (2013). Comparison between The Water and Salt Stress Effects on Plant Growth and Development. Responses of Organisms to Water Stress, 67. https://dx.doi.org/10.5772/54223
- Popović, B. M., Štajner, D., Ždero-Pavlović, R., & Tari, I., & Csiszár, J. (2017). Biochemical Response of Hybrid Black Poplar Tissue Culture (Populus × Canadensis) on Water Stress. Journal of Plant Research, 130(3): 559-570. https://doi.org/10.1007/s10265-017-0918-4
- RenJu, D., Yang, L., XianHao, Z., TianJiu, H., & JianMei, P. (2017). Effects of Persistence Drought on Growth and Physiological Characteristics of Potato Seedlings. Southwest China Journal of Agricultural Sciences, 30(2): 291-295.
- Shahzad, M. A., Jan, S. U., Afzal, F., Khalid, M., Gul, A. (2016). Drought Stress and Morphophysiological Responses in Plants. Water Stress and Crop Plants: A Sustainable Approach, 2: 452-467. https://doi.org/10.1002/9781119054450.ch27
- Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 1-26. https://doi.org/10.1155/2012/217037
- Selmi, A., Debaya, H., Triki, T., & Ferchichi, A. (2017). Effect of Water Deficiency on The Cellular Status and Antioxidant Defences in Anthyllis Sericea, A Saharian Plant. Pakistan Journal of Botany, 49(4): 1231-1237.
- Smedley, T. (2017). Dünyada Tatlı Su Kaynakları Tükeniyor Mu? BBC Future-Dergi. https://www.bbc.com/turkce/vert-fut-39646356 Son erişim tarihi: 26.06.2019
- Soni, A., Kumari, P., Dhakar, S., & Kumaar, N. (2017). Mechanisms and Strategies for İmproving drought Tolerance in Fruit Crops. Chemical Science Review and Letters, 6(23): 1537-1543
- Sen, S. M. (2011). Ceviz Yetiştiriciliği, Besin Değeri, Folklorü. ÜÇM Yayıncılık.
- Simsek, H., Akça, Y., Ünlükara, A., & Çekiç, Ç. (2017). Şebin Ceviz Çeşidinin Stres Koşullarına Dayanımının Belirlenmesi. Gaziosmapaşa Üniversitesi Ziraat Fakültesi Dergisi, 34: 141-150. https://doi.org/10.13002/jafag4416
- Tiryaki, T. (2018). Su Stresinin Yağ Gülü (Rosa daınascena Mili.) Fidanlarında Morfolojik ve Biyokimyasal Özellikler Üzerine Etkisi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta, 91s.
- Vahdati, K., Lofti, N. (2013). Abiotic Stress Tolerance in Plants with Emphasizing on Drought and Salinity Stresses in Walnut. Abiotic Stress. Plant Responses and Applications in Agriculture, 10, 307-365. https://doi.org/10.5772/56078
- Vahdati, K. (2014). Walnut Tolerance to Abiotic Stresses: Approaches and Prospects. VIIth International Walnut Symposium, Acta Horticulturae, 1050: 399-406. https://doi.org/10.17660/ActaHortic.2014.1050.56
- Zhu, Y., Luo, X., Nawaz, G., Yin, J., & Yang, J. (2020). Physiological and Biochemical Responses of Four Cassava Cultivars to Drought Stress. Scientific Reports, 10(1): 1-12.