Research Article
BibTex RIS Cite

Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system

Year 2025, Volume: 9 Issue: 2, 65 - 72

Abstract

Phosphorus (P) deficiency remains a significant constraint to sorghum (Sorghum bicolor L.) productivity, particularly in smallholder farming systems with limited access to fertilizers. This study aimed to evaluate root system architecture (RSA) plasticity among improved sorghum varieties under contrasting P conditions to identify varieties with superior P-foraging traits for low-input systems. Eight sorghum varieties were grown under low (5.38 mg/kg) and high (50 mg/kg) P levels, and their root traits were characterized using high-resolution imaging and RhizoVision analysis. Six RSA traits: total root length (TRL), number of root tips (NRT), branching points (NBP), surface area (SA), root diameter (AD), and root volume (RV), were analyzed in this study. Analysis of variance revealed significant variety (V), Phosphorus (P), and V × P interaction effects (p < 0.001) for all traits. Under low P, varieties showed enhanced RSA expression: TRL increased by 58%, NRT by 142%, NBP by 210%, SA by 89%, and RV by 133%, while AD declined by 32%, indicating strategic carbon investment in absorptive roots. Notably, KARI Mtama 1 exhibited constitutive robustness, while T30b demonstrated exceptional plasticity. TRL, SA, NA, NRT, and RV had over 74% of heritability, demonstrating strong genetic control. These findings underline RSA plasticity as a key adaptive strategy for nutrient acquisition, providing valuable breeding targets for P-efficient cultivars. Integrating these traits into breeding programs can enhance P-use efficiency, with KARI Mtama 1 and T30b serving as donor parents for developing elite sorghum lines suited to low P conditions.

Ethical Statement

This study was exempted from ethical review and approval because the study did not involve human clinical trials or animal experiments. The Ethics and Review Committee of the University of Eldoret approved the study.

Supporting Institution

None

Project Number

20-085

References

  • Anderson JM, Ingram JAI. 1993. Tropical soil biology and fertility. Wallingford: CAB.
  • Adu, M. O., Zigah, N., Yawson, D. O., Amoah, K. K., Afutu, E., Atiah, K., Darkwa, A. A., Asare, P. A. (2023.). Plasticity of root hair and rhizosheath traits and their relationship to phosphorus uptake in Sorghum. Plant Direct, 7: e521 1:22, https://doi.org/10.1002/pld3.521
  • Bernardino, K. C., Pastina, M. M., Menezes, C. B., de Sousa, S. M., Maciel, L. S., Carvalho Jr, G., Guimarães, C. T., Barros, B. A., da Costa e Silva, L., Carneiro, P. C. S., Schaffert, R. E., Kochian, L. V., Magalhães, J. V. (2019). The genetic architecture of phosphorus efficiency in Sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC Plant Biology, 19(1), 475.
  • Enyew, M., Geleta, M., Feyissa, T., Hammenhag, C., Tesfaye, K., Seyoum, A., Carlsson, A. S. (2023). Sorghum genotypes grown in simple rhizotrons display wide variation in root system architecture traits. Plant and Soil. https://doi.org/10.1007/s11104-023-06373-0
  • FAOSTAT (2022). https://www.fao.org/faostat/en/?utm_source=chatgpt.com#home
  • Freschet, G. T., Roumet, C. (2017). Sampling roots to capture plant and soil functions. Functional Ecology, 31(8), 1506–1518. https://doi.org/10.1111/1365-2435.12934
  • Gemenet, D. C., Leiser, W. L., Beggi, F., Herrmann, L. H., Vadez, V., Rattunde, H. F. W., Weltzien, E., Hash, C. T., Buerkert, A., Haussmann, B. I. G. (2016). Overcoming phosphorus deficiency in West African pearl millet and sorghum production systems: Promising options for crop improvement. Frontiers in Plant Science, 7, 1389. https://doi.org/10.3389/fpls.2016.01389
  • Gladman, N., Hufnagel, B., Regulski, M., Liu, Z., Wang, X., Chougule, K., Kochian, L., Magalhães, J., Ware, D. (2022). Sorghum root epigenetic landscape during limiting phosphorus conditions. Plant Direct, 6(5), Article e393. https://doi.org/10.1002/pld3.393
  • Holz, M., Zarebanadkouki, M., Bernard, P., Hoffmann, M., Dubbert, M. (2024). Root and rhizosphere traits for enhanced water and nutrient uptake efficiency in dynamic environments. Frontiers in Plant Science, 15, 1403958. https://doi.org/10.3389/fpls.2024.1403958
  • Hufnagel, B., Bernardino, K. C., Malosetti, M., Sousa, S. M., Silva, L. A., Guimaraes, C. T., Coelho, A. M., Santos, T. T., Viana, J. H. M., Schaffert, R. E., Kochian, L. V., Eeuwijk, F. A., Magalhaes, J. V. (2024). Multi-trait association mapping for phosphorous efficiency reveals flexible root architectures in Sorghum. BMC Plant Biology, 24(1), 562. https://doi.org/10.1186/s12870-024-05183-5
  • IBM Corp. (2015). IBM SPSS Statistics for Windows (Version 23.0) [Computer software]. IBM Corp.
  • Jackson, M. L. (1962). Soil chemical analysis (pp. 151–153). Englewood Cliffs, NJ: Prentice Hall.
  • Kebede, A., Barka, G. D., Kebede, M., Menamo, T. M., Tadesse, T. (2025). Phenotypic analysis of Sorghum [Sorghum bicolor (L) Moench] genotypes for drought responsive traits. Cogent Food & Agriculture, 11(1), 2454984 Kenya Plant Health Inspectorate Service [KEPHIS]. (2024). National crop variety list: 2024 edition. Nairobi, Kenya.
  • Khalifa, M., Eltahir, E. A. B. (2023, June 23). Assessment of global sorghum production, tolerance, and climate risk. Frontiers in Sustainable Food Systems, 7: 1184373. https://doi.org/10.3389/fsufs.2023.1184373
  • Khoddami, A., Messina, V., Vadabalija Venkata, K., Farahnaky, A., Blanchard, C. L., Roberts, T. H. (2021). Sorghum in foods: Functionality and potential in innovative products. Critical Reviews in Food Science and Nutrition, 63(9), 1170–1186. https://doi.org/10.1080/10408398.2021.196079
  • Kihara, J., Njoroge, S. (2013). Phosphorus agronomic efficiency in maize-based cropping systems: A focus on western Kenya. Field Crops Research, 150, 1–8. https://doi.org/10.1016/j.fcr.2013.05.010
  • Kisinyo, P. O., Othieno, C. O., Gudu, S. O., Okalebo, J. R., Opala, P. A., Ng'etich, W. K., Opile, W. R. (2014). Immediate and residual effects of lime and phosphorus fertilizer on soil acidity and maize production in western Kenya. Experimental Agriculture, 50(1), 128–143. https://doi.org/10.1017/S0014479713000217
  • Lee, S., Choi, Y.-M., Shin, M.-J., Yoon, H., Wang, X., Lee, Y., Yi, J., Jeon, Y.-A., Desta, K. T. (2023). Exploring the potentials of sorghum genotypes: A comprehensive study on nutritional qualities, functional metabolites, and antioxidant capacities. Frontiers in Nutrition, 10, 1238729. https://doi.org/10.3389/fnut.2023.1238729
  • Liaqat, H., Adnan, M., Batool, S., Saeed, Q., Mukhtar, T., Yousaf, M. N., Ahmad, S., Shahid, M., Ejaz, S., Akhtar, N. (2024). Sorghum: A star crop to combat abiotic stresses, food insecurity, and hunger under a changing climate: A review. Journal of Soil Science and Plant Nutrition, 24(1), 293. https://doi.org/10.1007/s42729-023-01607-7
  • Lopez-Bucio, J., Hernández-Abreu, E., Sánchez-Calderón, L., Nieto-Jacobo, M. F., Simpson, J., Herrera-Estrella, L. (2002). Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiology, 129, 244–256. https://doi.org/10.1104/pp.010934
  • Lynch, J. P. (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology, 156(3), 1041–1049. https://doi.org/10.1104/pp.111.175414
  • Marsalis, M. A., Angadi, S. V., Contreras-Govea, F. E. (2010). Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crops Research, 116, 52–57. https://doi.org/10.1016/j.fcr.2009.11.009
  • Mathew, I., Shimelis, H. (2022). Genetic analyses of root traits: Implications for environmental adaptation and new variety development: A review. Plant Breeding, 141(6), 683–702. https://doi.org/10.1111/pbr.13049
  • Mason, S. C., Kathol, D., Eskridge, K. M., Galusha, T. D. (2008). Yield increase has been more rapid for maize than for grain sorghum. Crop Science, 48, 1560–1568. https://doi.org/10.2135/cropsci2007.09.0529
  • Mikwa, E. O., Wittkop, B., Windpassinger, S. M., Weber, S. E., Ehrhardt, D., Snowdon, R. J. (2024). Early exposure to phosphorus starvation induces genetically determined responses in Sorghum bicolor roots. Theoretical and Applied Genetics, 137(220). https://doi.org/10.1007/s00122-024-04728-4
  • Nelson, D. W., Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis: Part 2. Chemical and microbiological properties (2nd ed., pp. 539–579). Madison, WI: American Society of Agronomy.
  • Okalebo, J. R., Othieno, C. O., Woomer, P. L., Karanja, N. K., Semoka, J. R. M., Bekunda, M. A., Mugendi, D. N., Muasya, R. M., Bationo, A., Mukhwana, E. J. (2006). Available technologies to replenish soil fertility in East Africa. Nutrient Cycling in Agroecosystems, 76, 153–170
  • Parra-Londono, S., Kavka, M., Samans, B., Snowdon, R., Wieckhorst, S., Uptmoor, R., Ordon, F. (2018). Sorghum root-system classification in contrasting phosphorus supply by combining morphological and anatomical traits. Annals of Botany, 121(2), 267–280. https://doi.org/10.1093/aob/mcx148
  • Péret, B., Desnos, T., Jost, R., Kanno, S., Berkowitz, O., Nussaume, L. (2014). Root architecture responses: In search of phosphate. Plant Physiology, 166, 1713–1723. https://doi.org/10.1104/pp.114.244541
  • Pregitzer, K. S. (2002). Fine roots of trees – A new perspective. New Phytologist, 154(2), 267–270.
  • Rajamanickam, V., Vinod, K. K., Vengavasi, K., Kumar, T., Chinnusamy, V., Pandey, R. (2024). Root architectural adaptations to phosphorus deficiency: Unraveling genotypic variability in wheat seedlings. Agriculture, 14(3), 447. https://doi.org/10.3390/agriculture14030447
  • Ricker-Gilbert, J. (2020). Inorganic fertilizer use among smallholder farmers in Sub-Saharan Africa: Implications for input subsidy policies. In S. Gomez y Paloma, L. Riesgo, & K. Louhichi (Eds.), The role of smallholder farms in food and nutrition security (pp. 81–98). Springer International Publishing. https://doi.org/10.1007/978-3-030-42148-9_5
  • Ristova, D., Busch, W. (2014). Natural variation of root traits: From development to nutrient uptake. Current Opinion in Plant Biology, 59, 102001. https://doi.org/10.1016/j.pbi.2020.102001
  • Sagnon, A., Traore, M., Tibiri, E. B., et al. (2024). Enhancing the use of phosphate rock through microbially-mediated compost transformation to improve agronomic and economic profitability in Sub-Saharan Africa. Frontiers in Sustainable Food Systems, 8, 1445683. https://doi.org/10.3389/fsufs.2024.1445683
  • Sahrawat, K. L. (1987). Determination of calcium, magnesium, zinc, and manganese in plant tissue using a dilute HCl extraction method. Communications in Soil Science and Plant Analysis, 18(9), 947–962.
  • Schulze, J., Temple, G., Temple, S. J., Beschow, H., Vance, C. P. (2006). Nitrogen fixation by white lupin under phosphorus deficiency. Annals of Botany, 98, 731–740. https://doi.org/10.1093/aob/mcl154
  • Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., York, L. M. (2021). RhizoVision Explorer: Open-source software for root image analysis and measurement standardization. Plant Phenomics, 2021, Article 9846263. https://doi.org/10.34133/2021/9846263
  • Silva, K. J., Santos, C. V., Menezes, C. B., de Sousa, S. M. (2024). Sorghum hybrids grown in hydroponics contrast for phosphorus use efficiency. Brazilian Journal of Biology, 84, e253083. https://doi.org/10.1590/1519-6984.253083
  • Silveira, T. C., Pegoraro, R. F., Kondo, M. K., Portugal, A. F., Resende, A. V. (2018). Sorghum yield after liming and combinations of phosphorus sources. Revista Brasileira de Engenharia Agrícola e Ambiental, 22, 243–248. https://doi.org/10.1590/1807-1929/agriambi.v22n4p243-248
  • Soltanpour, P. N., Workman, S. (1979). Modification of the NaHCO₃-DTPA soil test to omit carbon black. Communications in Soil Science and Plant Analysis, 10(11), 1411–1420.
  • Umakanth, A. V., Kumar, A. A., Vermerris, W., Tonapi, V. A. (2019). Chapter 16 - Sweet sorghum for biofuel industry. In Breeding sorghum for diversified end uses. 255-270. Woodhead Publishing Series in Food Science, Technology and Nutrition
  • Wu, Q., Pagès L., Wu, J. (2016). Relationships between root diameter, root length and root branching along lateral roots in adult, field-grown maize. Annal of Botany, 117(3) 379-390. doi: 10.1093/aob/mcv185.
There are 42 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Research Article
Authors

Benson Nyongesa 0000-0003-4860-8966

Project Number 20-085
Early Pub Date November 28, 2025
Publication Date November 30, 2025
Submission Date July 21, 2025
Acceptance Date November 24, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Nyongesa, B. (2025). Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system. International Journal of Agriculture Forestry and Life Sciences, 9(2), 65-72.
AMA Nyongesa B. Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system. Int J Agric For Life Sci. November 2025;9(2):65-72.
Chicago Nyongesa, Benson. “Root System Plasticity Enhances Phosphorus Acquisition in Sorghum for a Low-Input Farming System”. International Journal of Agriculture Forestry and Life Sciences 9, no. 2 (November 2025): 65-72.
EndNote Nyongesa B (November 1, 2025) Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system. International Journal of Agriculture Forestry and Life Sciences 9 2 65–72.
IEEE B. Nyongesa, “Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system”, Int J Agric For Life Sci, vol. 9, no. 2, pp. 65–72, 2025.
ISNAD Nyongesa, Benson. “Root System Plasticity Enhances Phosphorus Acquisition in Sorghum for a Low-Input Farming System”. International Journal of Agriculture Forestry and Life Sciences 9/2 (November2025), 65-72.
JAMA Nyongesa B. Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system. Int J Agric For Life Sci. 2025;9:65–72.
MLA Nyongesa, Benson. “Root System Plasticity Enhances Phosphorus Acquisition in Sorghum for a Low-Input Farming System”. International Journal of Agriculture Forestry and Life Sciences, vol. 9, no. 2, 2025, pp. 65-72.
Vancouver Nyongesa B. Root system plasticity enhances phosphorus acquisition in sorghum for a low-input farming system. Int J Agric For Life Sci. 2025;9(2):65-72.

lThe "International Journal of Agriculture, Forestry and Life Sciences" (IJAFLS) content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0  by-nc.png International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences.