Research Article
BibTex RIS Cite
Year 2020, , 234 - 243, 31.12.2020
https://doi.org/10.30939/ijastech..627422

Abstract

Project Number

0170.STZ.2013-1

References

  • H. Puga, M. Prokic, N. Van Donge: MMM Ultrasonic Metallurgy. http://mastersonics.com/documents/mmm_applications/ultrasonic_metallurgy/MMM-Ultrasonic-Metallurgy-Aluminium-International.pdf. Accessed 08 May 2018
  • Birol, Y. (2013). Impact of grain size on mechanical properties of AlSi7Mg0.3 alloy: Materials Science and Engineering A, 559, 394–400.
  • Nikanorov, S.P., Volkov, M. P., Gurin, V.N., Burenkov, Y. A., Derkachenko, L.I., Kardashev, B.K., Regel, L.L., Wilcox, W.R. (2005). Structural and mechanical properties of Al-Si alloys obtained by fast cooling of a levitated melt: Materials Science and Engineering:A, 390(1–2), 63–69.
  • YE, H. (2003). An overview of the development of Al-Si-Alloy based material for engine applications: JMEPEG, 12(3), 288–297.
  • Hawari, A. A., Khader, M., Hasan, W. E., Alijla, M., Manawi, A., Benamour, A. (2014). A life cycle assessment (LCA) of aluminum production process: International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(4), 704–710.
  • Xu, H., Meek, T., Han, Q. (2007). Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy: Materials Letters, 61(4–5), 1246–1250.
  • Xu, H., Jian, X., Meek, T. T., Han, Q. (2004). Degassing of molten aluminum A356 alloy using ultrasonic vibration: Materials letters, 58(29), 3669–3673.
  • Felberbaum, M., Landry-Désy, E., Weber, L., Rappaz, M. (2011). Effective hydrogen diffusion coefficient for solidifying aluminium alloys: Acta Materialia, 59(6), 2302–2308.
  • Dispinar, D., Akhtar, S., Nordmark, A., Sabatino, M.D., Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356: Materials Science and Engineering: A, 527(16–17), 3719–3725.
  • Dispinar, D., Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena : International Journal of Cast Metals Research, 17(5), 280–286.
  • Dispinar, D., Campbell, J. (2011). Porosity, hydrogen and bifilm content in : Materials Science and Engineering: A, 528(10–11), 3860–3865.
  • Dispinar, D., Akhtar, S., Nordmark, A., Syvertsen, F., Sabatino, M.D., Arnberg, L. (2012). Correlation between mechanical properties and porosity distribution of A356 in gravity die casting and low pressure die casting: Advanced Materials Research. Trans Tech Publ, 445, 283–288.
  • Eskin, D.G., Atamanenko, T.V., Zhang, L., Katgerman, L. (2010). On the mechanism of grain refinement by ultrasonic melt treatment in the presence of transition metals: Essential Readings in Light Metals. 415–419.
  • Eskin, G. I. (1995). Cavitation mechanism of ultrasonic melt degassing: Ultrasonics Sonochemistry, 2(2), 137–141.
  • Eskin, G. I. (2001). Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys: Ultrasonics Sonochemistry, 8(3), 319–325.
  • Puga, H., Barbosa, J., Seabra, E., Ribeiro, S., Prokic, M. (2009). The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminium alloy: Materials Letters, 63(9–10), 806–808.
  • Zhao, L., Pan, Y., Liao, H., Wang, Q. (2012). Degassing of aluminum alloys during remelting: Materials Letters, 66(1), 328–331.
  • Haghayeghi, R., Bahai, H., Kapranos, P. (2012). Effect of ultrasonic argon degassing on dissolved hydrogen in aluminium alloy: Materials Letters, 82, 230–232.
  • Puga, H., Barbosa, J., Tuan, N.Q., Silva, F. (2014). Effect of ultrasonic degassing on performance of Al-based components: Transactions of Nonferrous Metals Society of China, 24(11), 3459–3464.
  • Xu, H., Jian, X., Meek, T., Han, Q. (2016). Ultrasonic degassing of molten aluminum under reduced pressure: Essential Readings in Light Metals. Springer, Cham, 246–250.
  • Jia, S., Nastac, L. (2013). The influence of ultrasonic stirring on the solidification microstructure and mechanical properties of A356 alloy: Chemical and Materials Engineering, 1(3), 69–73.
  • Li, J., Momono, T., Tayu, Y., Fu, Y. (2008). Application of ultrasonic treating to degassing of metal ingots: Materials Letters, 62(25), 4152–4154.
  • Khomamizadeh, F., Ghasemi, A. (2004). Evaluation of quality indec of A-356 aluminum alloy by microstructural analysis: Scientia Iranica, 11(4), 386-391.
  • Czekaj, E., Zych, J., Kwak, Z., Garbacz-Klempka, A. (2016). Quality index of the AlSi7Mg0.3 aluminium casting alloy depending on the heat treatment parameters: Archives of Foundry Engineering, 16(3), 25–28.
  • Jian, X., Xu, H., Meek, T., Han, Q. (2005). Effect of power ultrasound on solidification of aluminum A356 alloy: Materials Letters, 59(2–3), 190–193.
  • Das, A., Kotadia, H.R. (2011). Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy: Materials Chemistry and Physics, 125(3), 853–859.
  • Qian, M., Ramirez, A., Das, A., Stjohn, D.H. (2010). The effect of solute on ultrasonic grain refinement of magnesium alloys: Journal of Crystal Growth, 312(15), 2267–2272.
  • Ramirez, A., Qian, M., Davis, B., Wilks, T., Stjohn, D. (2008). Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys: Scripta Materialia, 59(1), 19–22.
  • Wang, G., Dargusch, M.S., Qian, M., Eskin, D.G., Stjohn, D.H. (2014). The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy: Journal of Crystal Growth, 408, 119–124.
  • Tsunekawa, Y., Suzuki, H., Genma, Y. (2001). Application of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring: Materials & Design, 22(6), 467–472.
  • Shusen, W., Longfei, L., Qian, M., Youwu, M., Ping, A. (2012). Degassing effect of ultrasonic vibration in molten melt and semi-solid slurry of Al-Si alloys: China Foundry, 9(3), 201-206.
  • Sozhamannan, G.G., Balasivanandha Prabu, S., Venkatagalapathy, V.S.K. (2012). Effect of processing parameters on metal matrix composites: stir casting process: Journal of Surface Engineered Materials and Advanced Technology, 2(01), 11.
  • Dispinar, D., Campbell, J. (2004). Critical assessment of reduced pressure test Part 2: Quantification: International Journal of Cast Metals Research, 17(5), 287–294.
  • Dispinar, D., Campbell, J. (2006). Use of bifilm index as an assessment of liquid metal quality: International Journal of Cast Metals Research, 19(1), 5–17.
  • Dispinar, D., Akhtar, S., Nordmark, A., Syvertsen, F., Sabatino, M. D., Arnberg, L. (2012). Tensile properties, porosity and melt quality relation of A356: Supplemental Proceedings: Materials Properties, Characterization, and Modeling, 2, 201–208.
  • Aybarc, U., Yavuz, H., Dispinar, D., Seydibeyoglu, M.O. (2019). The use of stirring methods for the production of SiC-reinforced aluminum matrix composite and validation via simulation studies: International Journal of Metalcasting, 13(1), 190-200.
  • Yuksel, C., Tamer, O., Erzi, E., Aybarc, U., Cubuklusu, E., Topcuoglu, O., Cigdem, M., Dispinar, D. (2016). Quality evaluation of remelted A356 scraps: Archives of Foundry Engineering, 16(3), 151-156.

Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy

Year 2020, , 234 - 243, 31.12.2020
https://doi.org/10.30939/ijastech..627422

Abstract

The aim of this study is to investigate the effect of ultrasonic treatment on the microstructural and mechanical properties of A356 aluminum al-loy. Ultrasonic treatment was applied to 2 kg and 4 kg molten metals at different melting temperatures (700 oC, 720 oC and 740 oC) for different durations (0, 60, 180 and 300 seconds). Bifilm indices of the samples were also measured after all parameters were tested. The ultimate tensile strength (UTS) and elongation values were used to calculate the Quality Index (QI) of the samples. According to the results, the amount of liquid metal directly affects the the ultrasonic intensity that is produced during the treatment. Maximum UTS and elongation results were determined at 720 oC during 300 seconds for 4 kg casting. Minimum bifilm density val-ue was measured at the same ultrasonic temperature and time.    

Supporting Institution

Sanayi ve Ticaret Bakanlığı Sanayi - SANTEZ

Project Number

0170.STZ.2013-1

Thanks

The authors would like to acknowledge Cenk EKEN for his contribution of this study.

References

  • H. Puga, M. Prokic, N. Van Donge: MMM Ultrasonic Metallurgy. http://mastersonics.com/documents/mmm_applications/ultrasonic_metallurgy/MMM-Ultrasonic-Metallurgy-Aluminium-International.pdf. Accessed 08 May 2018
  • Birol, Y. (2013). Impact of grain size on mechanical properties of AlSi7Mg0.3 alloy: Materials Science and Engineering A, 559, 394–400.
  • Nikanorov, S.P., Volkov, M. P., Gurin, V.N., Burenkov, Y. A., Derkachenko, L.I., Kardashev, B.K., Regel, L.L., Wilcox, W.R. (2005). Structural and mechanical properties of Al-Si alloys obtained by fast cooling of a levitated melt: Materials Science and Engineering:A, 390(1–2), 63–69.
  • YE, H. (2003). An overview of the development of Al-Si-Alloy based material for engine applications: JMEPEG, 12(3), 288–297.
  • Hawari, A. A., Khader, M., Hasan, W. E., Alijla, M., Manawi, A., Benamour, A. (2014). A life cycle assessment (LCA) of aluminum production process: International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(4), 704–710.
  • Xu, H., Meek, T., Han, Q. (2007). Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy: Materials Letters, 61(4–5), 1246–1250.
  • Xu, H., Jian, X., Meek, T. T., Han, Q. (2004). Degassing of molten aluminum A356 alloy using ultrasonic vibration: Materials letters, 58(29), 3669–3673.
  • Felberbaum, M., Landry-Désy, E., Weber, L., Rappaz, M. (2011). Effective hydrogen diffusion coefficient for solidifying aluminium alloys: Acta Materialia, 59(6), 2302–2308.
  • Dispinar, D., Akhtar, S., Nordmark, A., Sabatino, M.D., Arnberg, L. (2010). Degassing, hydrogen and porosity phenomena in A356: Materials Science and Engineering: A, 527(16–17), 3719–3725.
  • Dispinar, D., Campbell, J. (2004). Critical assessment of reduced pressure test. Part 1: Porosity phenomena : International Journal of Cast Metals Research, 17(5), 280–286.
  • Dispinar, D., Campbell, J. (2011). Porosity, hydrogen and bifilm content in : Materials Science and Engineering: A, 528(10–11), 3860–3865.
  • Dispinar, D., Akhtar, S., Nordmark, A., Syvertsen, F., Sabatino, M.D., Arnberg, L. (2012). Correlation between mechanical properties and porosity distribution of A356 in gravity die casting and low pressure die casting: Advanced Materials Research. Trans Tech Publ, 445, 283–288.
  • Eskin, D.G., Atamanenko, T.V., Zhang, L., Katgerman, L. (2010). On the mechanism of grain refinement by ultrasonic melt treatment in the presence of transition metals: Essential Readings in Light Metals. 415–419.
  • Eskin, G. I. (1995). Cavitation mechanism of ultrasonic melt degassing: Ultrasonics Sonochemistry, 2(2), 137–141.
  • Eskin, G. I. (2001). Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys: Ultrasonics Sonochemistry, 8(3), 319–325.
  • Puga, H., Barbosa, J., Seabra, E., Ribeiro, S., Prokic, M. (2009). The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminium alloy: Materials Letters, 63(9–10), 806–808.
  • Zhao, L., Pan, Y., Liao, H., Wang, Q. (2012). Degassing of aluminum alloys during remelting: Materials Letters, 66(1), 328–331.
  • Haghayeghi, R., Bahai, H., Kapranos, P. (2012). Effect of ultrasonic argon degassing on dissolved hydrogen in aluminium alloy: Materials Letters, 82, 230–232.
  • Puga, H., Barbosa, J., Tuan, N.Q., Silva, F. (2014). Effect of ultrasonic degassing on performance of Al-based components: Transactions of Nonferrous Metals Society of China, 24(11), 3459–3464.
  • Xu, H., Jian, X., Meek, T., Han, Q. (2016). Ultrasonic degassing of molten aluminum under reduced pressure: Essential Readings in Light Metals. Springer, Cham, 246–250.
  • Jia, S., Nastac, L. (2013). The influence of ultrasonic stirring on the solidification microstructure and mechanical properties of A356 alloy: Chemical and Materials Engineering, 1(3), 69–73.
  • Li, J., Momono, T., Tayu, Y., Fu, Y. (2008). Application of ultrasonic treating to degassing of metal ingots: Materials Letters, 62(25), 4152–4154.
  • Khomamizadeh, F., Ghasemi, A. (2004). Evaluation of quality indec of A-356 aluminum alloy by microstructural analysis: Scientia Iranica, 11(4), 386-391.
  • Czekaj, E., Zych, J., Kwak, Z., Garbacz-Klempka, A. (2016). Quality index of the AlSi7Mg0.3 aluminium casting alloy depending on the heat treatment parameters: Archives of Foundry Engineering, 16(3), 25–28.
  • Jian, X., Xu, H., Meek, T., Han, Q. (2005). Effect of power ultrasound on solidification of aluminum A356 alloy: Materials Letters, 59(2–3), 190–193.
  • Das, A., Kotadia, H.R. (2011). Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy: Materials Chemistry and Physics, 125(3), 853–859.
  • Qian, M., Ramirez, A., Das, A., Stjohn, D.H. (2010). The effect of solute on ultrasonic grain refinement of magnesium alloys: Journal of Crystal Growth, 312(15), 2267–2272.
  • Ramirez, A., Qian, M., Davis, B., Wilks, T., Stjohn, D. (2008). Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys: Scripta Materialia, 59(1), 19–22.
  • Wang, G., Dargusch, M.S., Qian, M., Eskin, D.G., Stjohn, D.H. (2014). The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy: Journal of Crystal Growth, 408, 119–124.
  • Tsunekawa, Y., Suzuki, H., Genma, Y. (2001). Application of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring: Materials & Design, 22(6), 467–472.
  • Shusen, W., Longfei, L., Qian, M., Youwu, M., Ping, A. (2012). Degassing effect of ultrasonic vibration in molten melt and semi-solid slurry of Al-Si alloys: China Foundry, 9(3), 201-206.
  • Sozhamannan, G.G., Balasivanandha Prabu, S., Venkatagalapathy, V.S.K. (2012). Effect of processing parameters on metal matrix composites: stir casting process: Journal of Surface Engineered Materials and Advanced Technology, 2(01), 11.
  • Dispinar, D., Campbell, J. (2004). Critical assessment of reduced pressure test Part 2: Quantification: International Journal of Cast Metals Research, 17(5), 287–294.
  • Dispinar, D., Campbell, J. (2006). Use of bifilm index as an assessment of liquid metal quality: International Journal of Cast Metals Research, 19(1), 5–17.
  • Dispinar, D., Akhtar, S., Nordmark, A., Syvertsen, F., Sabatino, M. D., Arnberg, L. (2012). Tensile properties, porosity and melt quality relation of A356: Supplemental Proceedings: Materials Properties, Characterization, and Modeling, 2, 201–208.
  • Aybarc, U., Yavuz, H., Dispinar, D., Seydibeyoglu, M.O. (2019). The use of stirring methods for the production of SiC-reinforced aluminum matrix composite and validation via simulation studies: International Journal of Metalcasting, 13(1), 190-200.
  • Yuksel, C., Tamer, O., Erzi, E., Aybarc, U., Cubuklusu, E., Topcuoglu, O., Cigdem, M., Dispinar, D. (2016). Quality evaluation of remelted A356 scraps: Archives of Foundry Engineering, 16(3), 151-156.
There are 37 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Uğur Aybarç 0000-0002-5646-351X

Esra Dokumacı 0000-0003-3886-3963

Kazım Önel This is me

Project Number 0170.STZ.2013-1
Publication Date December 31, 2020
Submission Date October 1, 2019
Acceptance Date September 4, 2020
Published in Issue Year 2020

Cite

APA Aybarç, U., Dokumacı, E., & Önel, K. (2020). Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy. International Journal of Automotive Science And Technology, 4(4), 234-243. https://doi.org/10.30939/ijastech..627422
AMA Aybarç U, Dokumacı E, Önel K. Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy. IJASTECH. December 2020;4(4):234-243. doi:10.30939/ijastech.627422
Chicago Aybarç, Uğur, Esra Dokumacı, and Kazım Önel. “Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy”. International Journal of Automotive Science And Technology 4, no. 4 (December 2020): 234-43. https://doi.org/10.30939/ijastech. 627422.
EndNote Aybarç U, Dokumacı E, Önel K (December 1, 2020) Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy. International Journal of Automotive Science And Technology 4 4 234–243.
IEEE U. Aybarç, E. Dokumacı, and K. Önel, “Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy”, IJASTECH, vol. 4, no. 4, pp. 234–243, 2020, doi: 10.30939/ijastech..627422.
ISNAD Aybarç, Uğur et al. “Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy”. International Journal of Automotive Science And Technology 4/4 (December 2020), 234-243. https://doi.org/10.30939/ijastech. 627422.
JAMA Aybarç U, Dokumacı E, Önel K. Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy. IJASTECH. 2020;4:234–243.
MLA Aybarç, Uğur et al. “Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy”. International Journal of Automotive Science And Technology, vol. 4, no. 4, 2020, pp. 234-43, doi:10.30939/ijastech. 627422.
Vancouver Aybarç U, Dokumacı E, Önel K. Effect of Ultrasonic Treatment Parameters on Microstructural and Mechanical Properties of A356 Aluminum Alloy. IJASTECH. 2020;4(4):234-43.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png