Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 4, 390 - 397, 31.12.2021
https://doi.org/10.30939/ijastech..1003870

Abstract

References

  • [1] Zhang S, Zhong Q. Surface characterization studies on the interaction of V2O5–WO3/TiO2 catalyst for low temperature SCR of NO with NH3. J Solid State Chem. 2015;221:49-56. https://doi.org/10.1016/j.jssc.2014.09.008.
  • [2] Reşitoğlu İA, Altinişik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn. Environ. Policy. 2015;17:15-27. DOI 10.1007/s10098-014-0793-9.
  • [3] Ma S, Tan H, Li Y, Wang P, Zhao C, Niu X, Zhu Y. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (y=0.1, 0.2, 0.3) catalysts. Chemosphere. 2020;243:125309. https://doi.org/10.1016/j.chemosphere.2019.125309.
  • [4] Valanidou L, Theologides C, Zorpas AA, Savva PG, Costa CN. A novel highly selective and stable Ag/MgO-CeO2-Al2O3 catalyst for the low-temperature ethanol-SCR of NO. Appl Catal B: Environ. 2011;107:164-176. https://doi.org/10.1016/j.apcatb.2011.07.010.
  • [5] Vӓliheikki A, Petallidou KC, Kalamaras CM, Kolli T, Huuhtanen M, Maunula T, Keiski RL, Efstathiou AM. Selective catalytic reduction of NOx by Hydrogen (H2-SCR) on WOx-promoted Ce2Zr1-ZO2 solids. Appl Catal B: Environ. 2014;156-157:72-83. https://doi.org/10.1016/j.apcatb.2014.03.008.
  • [6] More PM, Nguyen DL, Granger P, Dujardin C, Dongare MK, Umbarkar SB. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust. Appl Catal B: Environ. 2015;174-175:145-156. https://doi.org/10.1016/j.apcatb.2015.02.035.
  • [7] Xu L, Li XS, Crocker M, Zhang ZS, Zhu AM, Shi C. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. J Mol Catal A Chem. 2013;378:82-90. https://doi.org/10.1016/j.molcata.2013.05.021.
  • [8] Liu Y, Hou Y, Han X, Wang J, Guo Y, Xiang N, Bai Y, Huang Z. Effect of ordered mesoporous alumina support on the structural and catalytic properties of Mn-Ni/OMA catalyst for NH3-SCR performance at low-temperature. ChemCatChem. 2016;12(3):953-962. https://doi.org/10.1002/cctc.201901466
  • [9] Guo M, Zhao P, Liu Q, Liu C, Han J, Ji N, Song C, Ma D, Lu X, Liang X, Li Z. Improved low-temperature activity and H2O resistance of Fe doped Mn-Eu catalysts for NO removal by NH3-SCR. ChemCatChem. 2019;11(19):4954-4965. https://doi.org/10.1002/cctc.201900979
  • [10] Zeng Y, Haw KG, Wang Y, Zhang S, Wang Z, Zhong Q, Kawi S. Recent progress of CeO2-TiO2 based catalysts for selective catalytic reduction of NOx by NH3. ChemCatChem. 2020;13(2):491-505. https://doi.org/10.1002/cctc.202001307
  • [11] Han W, Yi H, Tang X, Zhao S, Gao F, Zhang X, Ma C, Song L. Mn-Fe-Ce coating onto cordierite monoliths as structured catalysts for NO catalytic oxidation. ChemistrySelect. 2019;4:4664-4671. https://doi.org/10.1002/slct.201900834
  • [12] Chen JY, Fu P, Lv D, Chen Y, Fan M, Wu J, Meshram A, Mu B, Li X, Xia Q. Unusual positive effect of SO2 on Mn-Ce Mixed-Oxide Catalyst for the SCR reaction of NOx with NH3. Chem Eng J. 2021;407:127071. https://doi.org/10.1016/j.cej.2020.127071
  • [13] Kröcher O, Elsener M. Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution I. Catalytic studies. Appl Catal B: Environ. 2008; 75:215–227. https://doi.org/10.1016/j.apcatb.2007.04.021.
  • [14] Albert KB, Fan C, Pang L, Chen Z, Ming S, Albert T, Li T. The influence of chemical poisoning, hydrothermal aging and their co-effects on Cu-SAPO-34 catalyst for NOx reduction by NH3-SCR. Appl Surf Sci. 2019;479:1200-1211. https://doi.org/10.1016/j.apsusc.2019.02.120.
  • [15] Wang P, Chen S, Gao S, Zhang J, Wang H, Wu Z. Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead. Appl Catal B: Environ. 2018;231:299-309. https://doi.org/10.1016/j.apcatb.2018.03.024.
  • [16] Chen Z, Fan C, Pang L, Ming S, Liu P, Li T. The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NOx reduction by NH3-SCR. Appl Catal B: Environ. 2018;237:116-127. https://doi.org/10.1016/j.apcatb.2018.05.075.
  • [17] Qi L, Li J, Yao Y, Zhang Y. Heavy metal poisoned and regeneration of selective catalytic reduction catalysts. J Hazard Mater. 2019;366:492-500. https://doi.org/10.1016/j.jhazmat.2018.11.112.
  • [18] Wei L, Cui S, Guo H, Zhang L. The effect of alkali metal over Mn/TiO2 for low-temperature SCR of NO with NH3 through DRIFT and DFT. Comput Mater Sci. 2018;144:216-222. https://doi.org/10.1016/j.commatsci.2017.12.013.
  • [19] Xie K, Wang A, Woo J, Kumar A, Kamasamudram K, Olsson L. Deactivation of Cu-SSZ-13 SCR catalysts by vapor-phase phosphorus exposure. Appl Catal B: Environ. 2019;256:117815. https://doi.org/10.1016/j.apcatb.2019.117815.
  • [20] You Y, Chang H, Zhu T, Zhang T, Li X, Li J. The poisoning effects of phosphorus on CeO2-MoO3/TiO2 DeNOx catalysts: NH3-SCR activity and the formation of N2O. Mol Catal. 2017;439:15-24. https://doi.org/10.1016/j.mcat.2017.06.013.
  • [21] Kern P, Klimczak M, Heinzelmann T, Lucas M, Claus P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part II: Fe–zeolite catalysts. Appl Catal B: Environ. 2010;95:48–56. https://doi.org/10.1016/j.apcatb.2009.12.008.
  • [22] Gong P, Xie J, Fang D, He F, Li F, Qi, K. Enhancement of the NH3-SCR property of Ce-Zr-Ti by surface and structure modification with P. Appl Surf Sci. 2020;505:144641. https://doi.org/10.1016/j.apsusc.2019.144641.
  • [23] Shigapov AN, Graham GW, McCabe RW, Peck MP, Plummer HK. The preparation of high-surface-area cordierite monolith by ac-id treatment, Appl. Catal. A.: Gen. 1999;182:137-146. https://doi.org/10.1016/S0926-860X(99)00003-4.
  • [24] Lu S, Zhang J, Sun Y, Liu H. Preparation and characterization of CuO-CeO2-ZrO2/cordierite monolith catalysts. Ceram Int. 2017; 43:5957-5962. https://doi.org/10.1016/j.ceramint.2017.01.118
  • [25] Li F, Shen B, Tian L, Li G, He C. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica, Pow-der Technol. 2016;297:384-391. https://doi.org/10.1016/j.powtec.2016.04.050.
  • [26] Keskin Z. Enhancing of low-temperature OHC-SCR activity of Ag/TiO2 with addition of MnO2 nanoparticles, and performance evaluation using diesel engine exhaust gases. Environ Technol In-nov. 2021;21:101205. https://doi.org/10.1016/j.eti.2020.101205.
  • [27] Keskin Z, Özgür T, Özarslan H, Yakaryılmaz AC. Effects of hydrogen addition into liquefied petroleum gas reductant on the activity of Ag-Ti-Cu/Cordierite catalyst for selective catalytic reduction system. Int J Hydrogen Energy. 2021;46:7634-7641. https://doi.org/10.1016/j.ijhydene.2020.11.200.
  • [28] Keskin Z. Investigation of deactivation effect of Au addition to Ce/TiO2 catalyst for selective catalytic reduction using real diesel engine exhaust samples at low temperature conditions. J Chem Technol Biotechnol. 2021; 96 (8), 2275-2282. DOI 10.1002/jctb.6753.
  • [29] Ahmad MACM, Keskin A, Özarslan H, Keskin Z. Properties of ethyl alcohol-water mixtures as a reductant in a SCR system at low exhaust gas temperatures. Energy Sources, Part A. InPress. 2020;1556-7230. https://doi.org/10.1080/15567036.2020.1733142
  • [30] Yaşar A, Keskin A, Keskin Z, Özarslan H, Kaltar S. Low temperature catalytic activity of Ag based SCR catalysts with 2-propanol-toluene mixture as reductant. Mater Res Express. 2019;6:095523. https://doi.org/10.1088/2053-1591/ab31ea
  • [31] Tian J, Leng Y, Zhao Z, Xia Y, Sang Y, Hao P, Zhan J, Li M, Liu H. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy. 2015;11:419-427. https://doi.org/10.1016/j.nanoen.2014.10.025
  • [32] Chen L, Wang X, Cong Q, Ma H, Li S, Li W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3. Chem Eng J. 2019;369:957-967. https://doi.org/10.1016/j.cej.2019.03.055
  • [33] Gupta VK, Fakhri A, Agarwal S, Sadeghi N. Synthesis of MnO2/cellulose fiber nanocomposites for rapid adsorption of insecticide compound and optimization by response surface methodology. Int J Biol Macromol. 2017;102:840-846. https://doi.org/10.1016/j.ijbiomac.2017.04.075

Comparison of physicochemical properties and selective catalytic reduction activities of CeMn/TiO2 catalysts with and without phosphorus additives

Year 2021, Volume: 5 Issue: 4, 390 - 397, 31.12.2021
https://doi.org/10.30939/ijastech..1003870

Abstract

Lubricant additives contain phosphorus, which has a fly ash effect. Phospho-rus negatively affects catalyst activity. Determining the effects of phosphorus loading amount on the catalytic activity is important for the development of cata-lysts with high NOx reduction.
This study focuses on the control of NOx emissions, one of the air pollutants released from the diesel engine. The catalysts used in the reduction of NOx emis-sions were synthesized by washcoating method. Ce and Mn contents of all cata-lysts were adjusted as 3%, while the phosphorus contents of poisoned catalysts were adjusted as 0.5% and 1%. For this purpose, cordierite with high surface area was used. The catalysts were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), Brunauer-Emmett-Teller (BET), X-Ray diffraction (XRD) and ultraviolet visible spectroscopy (UV-Vis) analyzes. The NOx reduction activity of with and without phosphorus doped CeMn/TiO2 catalysts was investigated with the designed selective catalytic reduction system (SCR).
NOx conversion ratios of the CeMn/TiO2 catalyst reached the high values of 84.6% at 280 °C. After the phosphorus loading, the structure of the CeMn/TiO2 catalyst deteriorated, and the NOx conversion ratios decreased. 0.5P-CeMn/TiO2 and 1P-CeMn/TiO2 catalysts showed lower NOx conversion ratios compared to CeMn/TiO2 catalyst.
CeMn/TiO2 catalyst was found highly active for SCR at all tests. Phosphorus loading caused deactivation of the catalyst and deactivation increased due to the increase in phosphorus loading amount.

References

  • [1] Zhang S, Zhong Q. Surface characterization studies on the interaction of V2O5–WO3/TiO2 catalyst for low temperature SCR of NO with NH3. J Solid State Chem. 2015;221:49-56. https://doi.org/10.1016/j.jssc.2014.09.008.
  • [2] Reşitoğlu İA, Altinişik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn. Environ. Policy. 2015;17:15-27. DOI 10.1007/s10098-014-0793-9.
  • [3] Ma S, Tan H, Li Y, Wang P, Zhao C, Niu X, Zhu Y. Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (y=0.1, 0.2, 0.3) catalysts. Chemosphere. 2020;243:125309. https://doi.org/10.1016/j.chemosphere.2019.125309.
  • [4] Valanidou L, Theologides C, Zorpas AA, Savva PG, Costa CN. A novel highly selective and stable Ag/MgO-CeO2-Al2O3 catalyst for the low-temperature ethanol-SCR of NO. Appl Catal B: Environ. 2011;107:164-176. https://doi.org/10.1016/j.apcatb.2011.07.010.
  • [5] Vӓliheikki A, Petallidou KC, Kalamaras CM, Kolli T, Huuhtanen M, Maunula T, Keiski RL, Efstathiou AM. Selective catalytic reduction of NOx by Hydrogen (H2-SCR) on WOx-promoted Ce2Zr1-ZO2 solids. Appl Catal B: Environ. 2014;156-157:72-83. https://doi.org/10.1016/j.apcatb.2014.03.008.
  • [6] More PM, Nguyen DL, Granger P, Dujardin C, Dongare MK, Umbarkar SB. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust. Appl Catal B: Environ. 2015;174-175:145-156. https://doi.org/10.1016/j.apcatb.2015.02.035.
  • [7] Xu L, Li XS, Crocker M, Zhang ZS, Zhu AM, Shi C. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. J Mol Catal A Chem. 2013;378:82-90. https://doi.org/10.1016/j.molcata.2013.05.021.
  • [8] Liu Y, Hou Y, Han X, Wang J, Guo Y, Xiang N, Bai Y, Huang Z. Effect of ordered mesoporous alumina support on the structural and catalytic properties of Mn-Ni/OMA catalyst for NH3-SCR performance at low-temperature. ChemCatChem. 2016;12(3):953-962. https://doi.org/10.1002/cctc.201901466
  • [9] Guo M, Zhao P, Liu Q, Liu C, Han J, Ji N, Song C, Ma D, Lu X, Liang X, Li Z. Improved low-temperature activity and H2O resistance of Fe doped Mn-Eu catalysts for NO removal by NH3-SCR. ChemCatChem. 2019;11(19):4954-4965. https://doi.org/10.1002/cctc.201900979
  • [10] Zeng Y, Haw KG, Wang Y, Zhang S, Wang Z, Zhong Q, Kawi S. Recent progress of CeO2-TiO2 based catalysts for selective catalytic reduction of NOx by NH3. ChemCatChem. 2020;13(2):491-505. https://doi.org/10.1002/cctc.202001307
  • [11] Han W, Yi H, Tang X, Zhao S, Gao F, Zhang X, Ma C, Song L. Mn-Fe-Ce coating onto cordierite monoliths as structured catalysts for NO catalytic oxidation. ChemistrySelect. 2019;4:4664-4671. https://doi.org/10.1002/slct.201900834
  • [12] Chen JY, Fu P, Lv D, Chen Y, Fan M, Wu J, Meshram A, Mu B, Li X, Xia Q. Unusual positive effect of SO2 on Mn-Ce Mixed-Oxide Catalyst for the SCR reaction of NOx with NH3. Chem Eng J. 2021;407:127071. https://doi.org/10.1016/j.cej.2020.127071
  • [13] Kröcher O, Elsener M. Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution I. Catalytic studies. Appl Catal B: Environ. 2008; 75:215–227. https://doi.org/10.1016/j.apcatb.2007.04.021.
  • [14] Albert KB, Fan C, Pang L, Chen Z, Ming S, Albert T, Li T. The influence of chemical poisoning, hydrothermal aging and their co-effects on Cu-SAPO-34 catalyst for NOx reduction by NH3-SCR. Appl Surf Sci. 2019;479:1200-1211. https://doi.org/10.1016/j.apsusc.2019.02.120.
  • [15] Wang P, Chen S, Gao S, Zhang J, Wang H, Wu Z. Niobium oxide confined by ceria nanotubes as a novel SCR catalyst with excellent resistance to potassium, phosphorus, and lead. Appl Catal B: Environ. 2018;231:299-309. https://doi.org/10.1016/j.apcatb.2018.03.024.
  • [16] Chen Z, Fan C, Pang L, Ming S, Liu P, Li T. The influence of phosphorus on the catalytic properties, durability, sulfur resistance and kinetics of Cu-SSZ-13 for NOx reduction by NH3-SCR. Appl Catal B: Environ. 2018;237:116-127. https://doi.org/10.1016/j.apcatb.2018.05.075.
  • [17] Qi L, Li J, Yao Y, Zhang Y. Heavy metal poisoned and regeneration of selective catalytic reduction catalysts. J Hazard Mater. 2019;366:492-500. https://doi.org/10.1016/j.jhazmat.2018.11.112.
  • [18] Wei L, Cui S, Guo H, Zhang L. The effect of alkali metal over Mn/TiO2 for low-temperature SCR of NO with NH3 through DRIFT and DFT. Comput Mater Sci. 2018;144:216-222. https://doi.org/10.1016/j.commatsci.2017.12.013.
  • [19] Xie K, Wang A, Woo J, Kumar A, Kamasamudram K, Olsson L. Deactivation of Cu-SSZ-13 SCR catalysts by vapor-phase phosphorus exposure. Appl Catal B: Environ. 2019;256:117815. https://doi.org/10.1016/j.apcatb.2019.117815.
  • [20] You Y, Chang H, Zhu T, Zhang T, Li X, Li J. The poisoning effects of phosphorus on CeO2-MoO3/TiO2 DeNOx catalysts: NH3-SCR activity and the formation of N2O. Mol Catal. 2017;439:15-24. https://doi.org/10.1016/j.mcat.2017.06.013.
  • [21] Kern P, Klimczak M, Heinzelmann T, Lucas M, Claus P. High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part II: Fe–zeolite catalysts. Appl Catal B: Environ. 2010;95:48–56. https://doi.org/10.1016/j.apcatb.2009.12.008.
  • [22] Gong P, Xie J, Fang D, He F, Li F, Qi, K. Enhancement of the NH3-SCR property of Ce-Zr-Ti by surface and structure modification with P. Appl Surf Sci. 2020;505:144641. https://doi.org/10.1016/j.apsusc.2019.144641.
  • [23] Shigapov AN, Graham GW, McCabe RW, Peck MP, Plummer HK. The preparation of high-surface-area cordierite monolith by ac-id treatment, Appl. Catal. A.: Gen. 1999;182:137-146. https://doi.org/10.1016/S0926-860X(99)00003-4.
  • [24] Lu S, Zhang J, Sun Y, Liu H. Preparation and characterization of CuO-CeO2-ZrO2/cordierite monolith catalysts. Ceram Int. 2017; 43:5957-5962. https://doi.org/10.1016/j.ceramint.2017.01.118
  • [25] Li F, Shen B, Tian L, Li G, He C. Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica, Pow-der Technol. 2016;297:384-391. https://doi.org/10.1016/j.powtec.2016.04.050.
  • [26] Keskin Z. Enhancing of low-temperature OHC-SCR activity of Ag/TiO2 with addition of MnO2 nanoparticles, and performance evaluation using diesel engine exhaust gases. Environ Technol In-nov. 2021;21:101205. https://doi.org/10.1016/j.eti.2020.101205.
  • [27] Keskin Z, Özgür T, Özarslan H, Yakaryılmaz AC. Effects of hydrogen addition into liquefied petroleum gas reductant on the activity of Ag-Ti-Cu/Cordierite catalyst for selective catalytic reduction system. Int J Hydrogen Energy. 2021;46:7634-7641. https://doi.org/10.1016/j.ijhydene.2020.11.200.
  • [28] Keskin Z. Investigation of deactivation effect of Au addition to Ce/TiO2 catalyst for selective catalytic reduction using real diesel engine exhaust samples at low temperature conditions. J Chem Technol Biotechnol. 2021; 96 (8), 2275-2282. DOI 10.1002/jctb.6753.
  • [29] Ahmad MACM, Keskin A, Özarslan H, Keskin Z. Properties of ethyl alcohol-water mixtures as a reductant in a SCR system at low exhaust gas temperatures. Energy Sources, Part A. InPress. 2020;1556-7230. https://doi.org/10.1080/15567036.2020.1733142
  • [30] Yaşar A, Keskin A, Keskin Z, Özarslan H, Kaltar S. Low temperature catalytic activity of Ag based SCR catalysts with 2-propanol-toluene mixture as reductant. Mater Res Express. 2019;6:095523. https://doi.org/10.1088/2053-1591/ab31ea
  • [31] Tian J, Leng Y, Zhao Z, Xia Y, Sang Y, Hao P, Zhan J, Li M, Liu H. Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Nano Energy. 2015;11:419-427. https://doi.org/10.1016/j.nanoen.2014.10.025
  • [32] Chen L, Wang X, Cong Q, Ma H, Li S, Li W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3. Chem Eng J. 2019;369:957-967. https://doi.org/10.1016/j.cej.2019.03.055
  • [33] Gupta VK, Fakhri A, Agarwal S, Sadeghi N. Synthesis of MnO2/cellulose fiber nanocomposites for rapid adsorption of insecticide compound and optimization by response surface methodology. Int J Biol Macromol. 2017;102:840-846. https://doi.org/10.1016/j.ijbiomac.2017.04.075
There are 33 citations in total.

Details

Primary Language English
Subjects Chemical Engineering, Material Production Technologies
Journal Section Articles
Authors

Zeycan Keskin 0000-0003-1812-8742

Publication Date December 31, 2021
Submission Date October 2, 2021
Acceptance Date November 10, 2021
Published in Issue Year 2021 Volume: 5 Issue: 4

Cite

APA Keskin, Z. (2021). Comparison of physicochemical properties and selective catalytic reduction activities of CeMn/TiO2 catalysts with and without phosphorus additives. International Journal of Automotive Science And Technology, 5(4), 390-397. https://doi.org/10.30939/ijastech..1003870
AMA Keskin Z. Comparison of physicochemical properties and selective catalytic reduction activities of CeMn/TiO2 catalysts with and without phosphorus additives. IJASTECH. December 2021;5(4):390-397. doi:10.30939/ijastech.1003870
Chicago Keskin, Zeycan. “Comparison of Physicochemical Properties and Selective Catalytic Reduction Activities of CeMn/TiO2 Catalysts With and Without Phosphorus Additives”. International Journal of Automotive Science And Technology 5, no. 4 (December 2021): 390-97. https://doi.org/10.30939/ijastech. 1003870.
EndNote Keskin Z (December 1, 2021) Comparison of physicochemical properties and selective catalytic reduction activities of CeMn/TiO2 catalysts with and without phosphorus additives. International Journal of Automotive Science And Technology 5 4 390–397.
IEEE Z. Keskin, “Comparison of physicochemical properties and selective catalytic reduction activities of CeMn/TiO2 catalysts with and without phosphorus additives”, IJASTECH, vol. 5, no. 4, pp. 390–397, 2021, doi: 10.30939/ijastech..1003870.
ISNAD Keskin, Zeycan. “Comparison of Physicochemical Properties and Selective Catalytic Reduction Activities of CeMn/TiO2 Catalysts With and Without Phosphorus Additives”. International Journal of Automotive Science And Technology 5/4 (December 2021), 390-397. https://doi.org/10.30939/ijastech. 1003870.
JAMA Keskin Z. Comparison of physicochemical properties and selective catalytic reduction activities of CeMn/TiO2 catalysts with and without phosphorus additives. IJASTECH. 2021;5:390–397.
MLA Keskin, Zeycan. “Comparison of Physicochemical Properties and Selective Catalytic Reduction Activities of CeMn/TiO2 Catalysts With and Without Phosphorus Additives”. International Journal of Automotive Science And Technology, vol. 5, no. 4, 2021, pp. 390-7, doi:10.30939/ijastech. 1003870.
Vancouver Keskin Z. Comparison of physicochemical properties and selective catalytic reduction activities of CeMn/TiO2 catalysts with and without phosphorus additives. IJASTECH. 2021;5(4):390-7.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png