Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 4, 386 - 389, 31.12.2021
https://doi.org/10.30939/ijastech..999466

Abstract

References

  • [1] Sbayti M, Bahloul R, Belhadjsalah H, Zemzemi F. Optimization techniques applied to single point incremental forming process for biomedical application. Int J Adv Manuf Technol. 2018;95:1789–804.
  • [2] Grzancic G, Hiegemann L, Ben Khalifa N. Investigation of new tool design for incremental profile forming. Procedia Eng. 2017;207:1767–72.
  • [3] Mulay A, Ben BS, Ismail S, Kocanda A, Jasiński C. Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets. Arch Civ Mech Eng. 2018;18:1275–87.
  • [4] Kumar A, Gulati V. Experimental investigation and optimization of surface roughness in negative incremental forming. Meas J Int Meas Confed [Internet]. 2019;131:419–30. Available from: https://doi.org/10.1016/j.measurement.2018.08.078
  • [5] Malyer E, Müftüoğlu HS. The Influence of Friction Conditions on Formability of DC01 Steels by ISF. IOSR J Mech Civ Eng. 2015;12(3):134–8.
  • [6] AL-Obaidi A, Kunke A, Kräusel V. Hot single-point incremental forming of glass-fiber-reinforced polymer (PA6GF47) supported by hot air. J Manuf Process [Internet]. 2019;43(August 2018):17–25. Available from: https://doi.org/10.1016/j.jmapro.2019.04.036
  • [7] Ambrogio G, Gagliardi F, Conte R, Russo P. Feasibility analysis of hot incremental sheet forming process on thermoplastics. Int J Adv Manuf Technol. 2019;102(1–4):937–947.
  • [8] Najafabady SA, Ghaei A. An experimental study on dimensional accuracy, surface quality, and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental forming. Int J Adv Manuf Technol. 2016;87:3579–88.
  • [9] Miguel V. Influence of temperature on alloy Ti6Al4V formability during the warm SPIF process. Procedia Eng [Internet]. 2017;207:866–71. Available from: https://doi.org/10.1016/j.proeng.2017.10.843
  • [10] Seçgin Ö, Özsert İ. Experimental investigation of new blank holder approach for incremental forming method. Int J Adv Manuf Technol. 2019 Mar 17;101:357–65.
  • [11] Raju C, Sathiya Narayanan C. Application of a hybrid optimization technique in a multiple sheet single point incremental forming process. Measurement [Internet]. 2016;78:296–308. Available from: http://www.sciencedirect.com/science/article/pii/S026322411500559X
  • [12] Baruah A, Pandivelan C, Jeevanantham AK. Optimization of AA5052 in incremental sheet forming using grey relational analysis. Measurement. 2017;106:95–100.
  • [13] Fiorentino A, Feriti GC, Giardini C, Ceretti E. Part precision improvement in incremental sheet forming of not axisymmetric parts using an artificial cognitive system. J Manuf Syst [Internet]. 2015;35:215–22. Available from: http://dx.doi.org/10.1016/j.jmsy.2015.02.003
  • [14] Taşdemir V. Optimization of Incremental Forming of Low-Alloy High-Yield-Strength HC300LA Sheet Using a Rolling Blank Holder Method. Steel Res Int. 2021;92(2):1–8.
  • [15] Song X, Zhang J, Zhai W, Taureza M, Castagne S, Danno A. Numerical and experimental investigation on the deformation mechanism of micro single point incremental forming process. J Manuf Process [Internet]. 2018;36(August 2017):248–54. Available from: https://doi.org/10.1016/j.jmapro.2018.10.035
  • [16] Mirnia MJ, Vahdani M, Shamsari M. Ductile damage and deformation mechanics in multistage single point incremental forming. Int J Mech Sci [Internet]. 2018;136(December 2017):396–412. Available from: https://doi.org/10.1016/j.ijmecsci.2017.12.051
  • [17] Memicoglu P, Music O, Karadogan C. Simulation of incremental sheet forming using partial sheet models. Procedia Eng [Internet]. 2017;207:831–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S187770581735614X
  • [18] Gatea S, Ou H, Lu B, Mccartney G. Modelling of ductile fracture in single point incremental forming using a modified GTN model. Eng Fract Mech. 2017;186:59–79.
  • [19] Zhang H, Dong X. Physically based crystal plasticity FEM including geometrically necessary dislocations: Numerical implementation and applications in micro-forming. Comput Mater Sci. 2015;110:308–20.
  • [20] Kuttolamadom M, Jones J, Mears L, Von Oehsen J, Kurfess T, Ziegert J. High performance computing simulations to identify process parameter designs for profitable titanium machining. J Manuf Syst [Internet]. 2017;43:235–47. Available from: http://dx.doi.org/10.1016/j.jmsy.2017.02.014
  • [21] Lu B, Fang Y, Xu DK, Chen J, Ai S, Long H, et al. Investigation of material deformation mechanism in double side incremental sheet forming. Int J Mach Tools Manuf. 2015;93:37–48.
  • [22] Azevedo NG, Farias JS, Bastos RP, Teixeira P, Davim JP, De Sousa RJA. Lubrication Aspects During Single Point Incremental Forming for Steel and Aluminum Materials. Int J Precis Eng Manuf. 2015;16(3):589–95.

Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method

Year 2021, Volume: 5 Issue: 4, 386 - 389, 31.12.2021
https://doi.org/10.30939/ijastech..999466

Abstract

TPIF-RL method is a new method that gives better wall thickness in incremental forming. In this method, the sheet is not fixed at the edges. Like the deep drawing process, it is compressed with a certain pressure. During the forming process, the sheet flows under the blankholder. Thus, more homogenous wall thickness is ob-tained.
In this study, Titanium Grade 2 sheet is formed as a cone via TPIF-RL method. Optimum forming parameters were determined by Signal/Noise analysis. In addi-tion, finite element analysis of the process was performed. Using 2 bar clamping pressure, 1000 mm/min feedrate, 0.75 mm increment and 15 mm forming tool di-ameter optimum result was obtained. With these optimum parameters, 6% thin-ning occurs on sheet thickness. This new method ensures a homogeneous wall thickness distribution.

References

  • [1] Sbayti M, Bahloul R, Belhadjsalah H, Zemzemi F. Optimization techniques applied to single point incremental forming process for biomedical application. Int J Adv Manuf Technol. 2018;95:1789–804.
  • [2] Grzancic G, Hiegemann L, Ben Khalifa N. Investigation of new tool design for incremental profile forming. Procedia Eng. 2017;207:1767–72.
  • [3] Mulay A, Ben BS, Ismail S, Kocanda A, Jasiński C. Performance evaluation of high-speed incremental sheet forming technology for AA5754 H22 aluminum and DC04 steel sheets. Arch Civ Mech Eng. 2018;18:1275–87.
  • [4] Kumar A, Gulati V. Experimental investigation and optimization of surface roughness in negative incremental forming. Meas J Int Meas Confed [Internet]. 2019;131:419–30. Available from: https://doi.org/10.1016/j.measurement.2018.08.078
  • [5] Malyer E, Müftüoğlu HS. The Influence of Friction Conditions on Formability of DC01 Steels by ISF. IOSR J Mech Civ Eng. 2015;12(3):134–8.
  • [6] AL-Obaidi A, Kunke A, Kräusel V. Hot single-point incremental forming of glass-fiber-reinforced polymer (PA6GF47) supported by hot air. J Manuf Process [Internet]. 2019;43(August 2018):17–25. Available from: https://doi.org/10.1016/j.jmapro.2019.04.036
  • [7] Ambrogio G, Gagliardi F, Conte R, Russo P. Feasibility analysis of hot incremental sheet forming process on thermoplastics. Int J Adv Manuf Technol. 2019;102(1–4):937–947.
  • [8] Najafabady SA, Ghaei A. An experimental study on dimensional accuracy, surface quality, and hardness of Ti-6Al-4 V titanium alloy sheet in hot incremental forming. Int J Adv Manuf Technol. 2016;87:3579–88.
  • [9] Miguel V. Influence of temperature on alloy Ti6Al4V formability during the warm SPIF process. Procedia Eng [Internet]. 2017;207:866–71. Available from: https://doi.org/10.1016/j.proeng.2017.10.843
  • [10] Seçgin Ö, Özsert İ. Experimental investigation of new blank holder approach for incremental forming method. Int J Adv Manuf Technol. 2019 Mar 17;101:357–65.
  • [11] Raju C, Sathiya Narayanan C. Application of a hybrid optimization technique in a multiple sheet single point incremental forming process. Measurement [Internet]. 2016;78:296–308. Available from: http://www.sciencedirect.com/science/article/pii/S026322411500559X
  • [12] Baruah A, Pandivelan C, Jeevanantham AK. Optimization of AA5052 in incremental sheet forming using grey relational analysis. Measurement. 2017;106:95–100.
  • [13] Fiorentino A, Feriti GC, Giardini C, Ceretti E. Part precision improvement in incremental sheet forming of not axisymmetric parts using an artificial cognitive system. J Manuf Syst [Internet]. 2015;35:215–22. Available from: http://dx.doi.org/10.1016/j.jmsy.2015.02.003
  • [14] Taşdemir V. Optimization of Incremental Forming of Low-Alloy High-Yield-Strength HC300LA Sheet Using a Rolling Blank Holder Method. Steel Res Int. 2021;92(2):1–8.
  • [15] Song X, Zhang J, Zhai W, Taureza M, Castagne S, Danno A. Numerical and experimental investigation on the deformation mechanism of micro single point incremental forming process. J Manuf Process [Internet]. 2018;36(August 2017):248–54. Available from: https://doi.org/10.1016/j.jmapro.2018.10.035
  • [16] Mirnia MJ, Vahdani M, Shamsari M. Ductile damage and deformation mechanics in multistage single point incremental forming. Int J Mech Sci [Internet]. 2018;136(December 2017):396–412. Available from: https://doi.org/10.1016/j.ijmecsci.2017.12.051
  • [17] Memicoglu P, Music O, Karadogan C. Simulation of incremental sheet forming using partial sheet models. Procedia Eng [Internet]. 2017;207:831–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S187770581735614X
  • [18] Gatea S, Ou H, Lu B, Mccartney G. Modelling of ductile fracture in single point incremental forming using a modified GTN model. Eng Fract Mech. 2017;186:59–79.
  • [19] Zhang H, Dong X. Physically based crystal plasticity FEM including geometrically necessary dislocations: Numerical implementation and applications in micro-forming. Comput Mater Sci. 2015;110:308–20.
  • [20] Kuttolamadom M, Jones J, Mears L, Von Oehsen J, Kurfess T, Ziegert J. High performance computing simulations to identify process parameter designs for profitable titanium machining. J Manuf Syst [Internet]. 2017;43:235–47. Available from: http://dx.doi.org/10.1016/j.jmsy.2017.02.014
  • [21] Lu B, Fang Y, Xu DK, Chen J, Ai S, Long H, et al. Investigation of material deformation mechanism in double side incremental sheet forming. Int J Mach Tools Manuf. 2015;93:37–48.
  • [22] Azevedo NG, Farias JS, Bastos RP, Teixeira P, Davim JP, De Sousa RJA. Lubrication Aspects During Single Point Incremental Forming for Steel and Aluminum Materials. Int J Precis Eng Manuf. 2015;16(3):589–95.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Articles
Authors

Ömer Seçgin 0000-0001-6158-3164

Ergün Nart 0000-0002-0153-7438

İbrahim Özsert This is me 0000-0002-9816-4868

Publication Date December 31, 2021
Submission Date September 22, 2021
Acceptance Date November 9, 2021
Published in Issue Year 2021 Volume: 5 Issue: 4

Cite

APA Seçgin, Ö., Nart, E., & Özsert, İ. (2021). Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method. International Journal of Automotive Science And Technology, 5(4), 386-389. https://doi.org/10.30939/ijastech..999466
AMA Seçgin Ö, Nart E, Özsert İ. Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method. IJASTECH. December 2021;5(4):386-389. doi:10.30939/ijastech.999466
Chicago Seçgin, Ömer, Ergün Nart, and İbrahim Özsert. “Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method”. International Journal of Automotive Science And Technology 5, no. 4 (December 2021): 386-89. https://doi.org/10.30939/ijastech. 999466.
EndNote Seçgin Ö, Nart E, Özsert İ (December 1, 2021) Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method. International Journal of Automotive Science And Technology 5 4 386–389.
IEEE Ö. Seçgin, E. Nart, and İ. Özsert, “Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method”, IJASTECH, vol. 5, no. 4, pp. 386–389, 2021, doi: 10.30939/ijastech..999466.
ISNAD Seçgin, Ömer et al. “Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method”. International Journal of Automotive Science And Technology 5/4 (December 2021), 386-389. https://doi.org/10.30939/ijastech. 999466.
JAMA Seçgin Ö, Nart E, Özsert İ. Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method. IJASTECH. 2021;5:386–389.
MLA Seçgin, Ömer et al. “Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method”. International Journal of Automotive Science And Technology, vol. 5, no. 4, 2021, pp. 386-9, doi:10.30939/ijastech. 999466.
Vancouver Seçgin Ö, Nart E, Özsert İ. Incremental Forming of Titanium Grade 2 Sheet by TPIF-RL Method. IJASTECH. 2021;5(4):386-9.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png