Research Article
BibTex RIS Cite

An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry

Year 2024, Volume: 8 Issue: 3, 312 - 321, 30.09.2024
https://doi.org/10.30939/ijastech..1445222

Abstract

Wood plastic composites (WPCs) offer a promising alternative for various automotive components, combining the benefits of wood and polymers such as lightness, strength, and sustainability. However, determining decomposition kinetics is challenging due to the intricate composition of WPCs. Therefore, this research work focused to analyze the relationship between the thermal degradation of WPCs, the degradation atmosphere, and the kinetics. The kinetic parameters were evaluated by Coats and Redfern method based on a set of TGA experiments under variable atmospheres (inert and oxidative) using 10 ℃/min heating rate. Thermograms demonstrated significant differences in the thermal properties of WPC when subjected to oxidative and inert atmospheres, despite two conditions having the same number of thermal degradation zones. It has been suggested that the process of thermal decomposition of WPC contains three weight loss segments under inert and oxidative atmosphere according to the Gaussian multi-peak fitting function. The Coats-Redfern method showed multi-step chemical kinetics and more accurately characterizes the decomposition behavior of WPC, attributing to its multi-compositional properties. Proposed reaction schemes had regression coefficients higher than 0.9809 to obtain reaction order, activation energy and pre-exponential factor.

References

  • [1] Katmer M, Akkurt AD, Kocakulak T. Investigation of Natural Frequency Values of Composite Cover Design with Different Laying Angles. Engineering Perspective. 2022;2(4):46-51. http://dx.doi.org/10.29228/eng.pers.66826
  • [2] Şimşir E, Bayrakçeken H. Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry. International Journal of Automotive Science And Technology. 2024 ;8(1):132-41. https://doi.org/10.30939/ijastech..1399886
  • [3] Al-Majali YT, Forshey S, Trembly JP. Effect of natural carbon filler on thermo-oxidative degradation of thermoplastic-based composites. Thermochim Acta. 2022;713:179226. https://doi.org/10.1016/j.tca.2022.179226
  • [4] Kılıç E, Fullana-i-Palmer P, Fullana M, Delgado-Aguilar M, Puig R. Circularity of new composites from recycled high density polyethylene and leather waste for automotive bumpers. Testing performance and environmental impact. Science of The Total Environment. 2024;919:170413. https://doi.org/10.1016/j.scitotenv.2024.170413
  • [5] Yuen ACY, Chen TBY, De Cachinho Cordero IM, Liu H, Li A, Yang W, Cheung SCP, Chan QN, Kook S, Yeoh GH. Developing a solid decomposition kinetics extraction framework for detailed chemistry pyrolysis and combustion modelling of building polymer composites. J Anal Appl Pyrolysis. 2022;163:105500. https://doi.org/10.1016/j.jaap.2022.105500
  • [6] Gardner DJ, Han Y, Wang L. Wood–Plastic Composite Technology. Current Forestry Reports. 2015;1(3):139–50. https://doi.org/10.1007/s40725-015-0016-6
  • [7] Schwarzkopf MJ, Burnard MD. Wood-Plastic Composites—Performance and Environmental Impacts. In 2016. p. 19–43. https://doi.org/10.1007/978-981-10-0655-5_2
  • [8] Ashori A. Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol. 2008;99(11):4661–4667. https://doi.org/10.1016/j.biortech.2007.09.043
  • [9] Karaçor B, Özcanlı M. Different Curing Temperature Effects on Mechanical Properties of Jute/Glass Fiber Reinforced Hybrid Composites. International Journal of Automotive Science and Technology. 2021;5(4):358–71. https://doi.org/10.30939/ijastech..989976
  • [10] Chen K, Xie Z, Chu L, Wu J, Shen L, Bao N. Improving interfacial bonding strength between epoxy and PE-based wood plastic composites by micro-riveting. Compos Sci Technol. 2024; 248:110434. https://doi.org/10.1016/j.compscitech.2024.110434
  • [11] Wilczyński K, Buziak K, Nastaj A, Lewandowski A, Wilczynski KJ. Rheology for Modeling of Extrusion of Wood Plastic Composites. Macromol Symp. 2022;405(1). https://doi.org/10.1002/masy.202100285
  • [12] Elsheikh AH, Panchal H, Shanmugan S, Muthuramalingam T, El-Kassas AM, Ramesh B. Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. Clean Eng Technol. 2022;8:100450. https://doi.org/10.1016/j.clet.2022.100450
  • [13] Xu X, Jayaraman K, Morin C, Pecqueux N. Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol. 2008;198(1):168–77. https://doi.org/10.1016/j.jmatprotec.2007.06.087
  • [14] Sommerhuber PF, Wenker JL, Rüter S, Krause A. Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resour Conserv Recycl. 2017;117:235–48. https://doi.org/10.1016/j.resconrec.2016.10.012
  • [15] Teles MCA, Glória GO, Altoé GR, Amoy Netto P, Margem FM, Braga FO, et al. Evaluation of the Diameter Influence on the Tensile Strength of Pineapple Leaf Fibers (PALF) by Weibull Method. Materials Research. 2015;18:185–92. https://doi.org/10.1590/1516-1439.362514
  • [16] Al-Majali YT, Forshey S, Trembly JP. Effect of natural carbon filler on thermo-oxidative degradation of thermoplastic-based composites. Thermochim Acta. 2022;713:179226. https://doi.org/10.1016/j.tca.2022.179226
  • [17] Ali G. Kinetic study of pyrolysis of waste polystyrene and polyethylene mixture using novel non‐isothermal method. ChemistrySelect. 2024;9(4). https://doi.org/10.1002/slct.202301819
  • [18] Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews. 2018;82:2705–15. https://doi.org/10.1016/j.rser.2017.09.113
  • [19] Cordova S, Estala-Rodriguez K, Shafirovich E. Oxidation kinetics of magnesium particles determined by isothermal and non-isothermal methods of thermogravimetric analysis. Combust Flame. 2022;237:111861. https://doi.org/10.1016/j.combustflame.2021.111861
  • [20] White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91(1):1–33. https://doi.org/10.1016/j.jaap.2011.01.004
  • [21] Tarani E, Chrissafis K. Isoconversional methods: A powerful tool for kinetic analysis and the identification of experimental data quality. Thermochim Acta. 2024;733:179690. https://doi.org/10.1016/j.tca.2024.179690
  • [22] Coats AW, Redfern JP. Kinetic Parameters from Thermogravimetric Data. Nature. 1964;201(4914):68–9. https://doi.org/10.1038/201068a0
  • [23] Aprianti N, Faizal M, Said M, Nasir S, Fudholi A. Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis. Energy. 2023;268:126666. https://doi.org/10.1016/j.energy.2023.126666
  • [24] Cao J, Xiao G, Xu X, Shen D, Jin B. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Processing Technology. 2013;106:41–7. https://doi.org/10.1016/j.fuproc.2012.06.016
  • [25] Deng N, Zhang Y Feng, Wang Y. Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition. Waste Management. 2008;28(9):1572–80. https://doi.org/10.1016/j.wasman.2007.05.024
  • [26] Özsin G, Pütün AE. An investigation on pyrolysis of textile wastes: Kinetics, thermodynamics, in-situ monitoring of evolved gasses and analysis of the char residue. J Environ Chem Eng. 2022;10(3):107748. https://doi.org/10.1016/j.jece.2022.107748
  • [27] Özsin G, Alpaslan Takan M, Takan A, Pütün AE. A combined phenomenological artificial neural network approach for determination of pyrolysis and combustion kinetics of polyvinyl chloride. Int J Energy Res. 2022;46(12):16959–78. https://doi.org/10.1002/er.8361
  • [28] Ma J, Luo H, Li Y, Liu Z, Li D, Gai C, Jiao W. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis. Bioresour Technol. 2019;282:133–41. https://doi.org/10.1016/j.biortech.2019.03.007
  • [29] Mehmood MA, Ahmad MS, Liu Q, Liu CG, Tahir MH, Aloqbi AA, Tarbiah NI, Alsufiani HM, Gull M. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study. Energy Convers Manag. 2019 ;194:37–45. https://doi.org/10.1016/j.enconman.2019.04.076
  • [30] Raj A, Ghodke PK. Investigation of the effect of metal-impregnated catalyst on the kinetics of lignocellulosic biomass waste pyrolysis. J Environ Chem Eng. 2024;112243. https://doi.org/10.1016/j.jece.2024.112243
  • [31] Tagade A, Kandpal S, Sawarkar AN. Insights into pyrolysis of pearl millet (Pennisetum glaucum) straw through thermogravimetric analysis: Physico-chemical characterization, kinetics, and reaction mechanism. Bioresour Technol. 2024;391:129930. https://doi.org/10.1016/j.biortech.2023.129930
  • [32] Qi R, Xiang A, Wang M, Jiang E, Li Z, Xiao H, Tan X. Combustion characteristics and kinetic analysis for pyrolysis char of torrefied pretreament from camellia shell. Biomass Convers Biorefin. 2024;14(3):3501–12. https://doi.org/10.1007/s13399-022-02486-1
Year 2024, Volume: 8 Issue: 3, 312 - 321, 30.09.2024
https://doi.org/10.30939/ijastech..1445222

Abstract

References

  • [1] Katmer M, Akkurt AD, Kocakulak T. Investigation of Natural Frequency Values of Composite Cover Design with Different Laying Angles. Engineering Perspective. 2022;2(4):46-51. http://dx.doi.org/10.29228/eng.pers.66826
  • [2] Şimşir E, Bayrakçeken H. Examination of Mechanical Tests of CFRP Composite Material with Different Orientation Angles Used in the Automotive Industry. International Journal of Automotive Science And Technology. 2024 ;8(1):132-41. https://doi.org/10.30939/ijastech..1399886
  • [3] Al-Majali YT, Forshey S, Trembly JP. Effect of natural carbon filler on thermo-oxidative degradation of thermoplastic-based composites. Thermochim Acta. 2022;713:179226. https://doi.org/10.1016/j.tca.2022.179226
  • [4] Kılıç E, Fullana-i-Palmer P, Fullana M, Delgado-Aguilar M, Puig R. Circularity of new composites from recycled high density polyethylene and leather waste for automotive bumpers. Testing performance and environmental impact. Science of The Total Environment. 2024;919:170413. https://doi.org/10.1016/j.scitotenv.2024.170413
  • [5] Yuen ACY, Chen TBY, De Cachinho Cordero IM, Liu H, Li A, Yang W, Cheung SCP, Chan QN, Kook S, Yeoh GH. Developing a solid decomposition kinetics extraction framework for detailed chemistry pyrolysis and combustion modelling of building polymer composites. J Anal Appl Pyrolysis. 2022;163:105500. https://doi.org/10.1016/j.jaap.2022.105500
  • [6] Gardner DJ, Han Y, Wang L. Wood–Plastic Composite Technology. Current Forestry Reports. 2015;1(3):139–50. https://doi.org/10.1007/s40725-015-0016-6
  • [7] Schwarzkopf MJ, Burnard MD. Wood-Plastic Composites—Performance and Environmental Impacts. In 2016. p. 19–43. https://doi.org/10.1007/978-981-10-0655-5_2
  • [8] Ashori A. Wood–plastic composites as promising green-composites for automotive industries! Bioresour Technol. 2008;99(11):4661–4667. https://doi.org/10.1016/j.biortech.2007.09.043
  • [9] Karaçor B, Özcanlı M. Different Curing Temperature Effects on Mechanical Properties of Jute/Glass Fiber Reinforced Hybrid Composites. International Journal of Automotive Science and Technology. 2021;5(4):358–71. https://doi.org/10.30939/ijastech..989976
  • [10] Chen K, Xie Z, Chu L, Wu J, Shen L, Bao N. Improving interfacial bonding strength between epoxy and PE-based wood plastic composites by micro-riveting. Compos Sci Technol. 2024; 248:110434. https://doi.org/10.1016/j.compscitech.2024.110434
  • [11] Wilczyński K, Buziak K, Nastaj A, Lewandowski A, Wilczynski KJ. Rheology for Modeling of Extrusion of Wood Plastic Composites. Macromol Symp. 2022;405(1). https://doi.org/10.1002/masy.202100285
  • [12] Elsheikh AH, Panchal H, Shanmugan S, Muthuramalingam T, El-Kassas AM, Ramesh B. Recent progresses in wood-plastic composites: Pre-processing treatments, manufacturing techniques, recyclability and eco-friendly assessment. Clean Eng Technol. 2022;8:100450. https://doi.org/10.1016/j.clet.2022.100450
  • [13] Xu X, Jayaraman K, Morin C, Pecqueux N. Life cycle assessment of wood-fibre-reinforced polypropylene composites. J Mater Process Technol. 2008;198(1):168–77. https://doi.org/10.1016/j.jmatprotec.2007.06.087
  • [14] Sommerhuber PF, Wenker JL, Rüter S, Krause A. Life cycle assessment of wood-plastic composites: Analysing alternative materials and identifying an environmental sound end-of-life option. Resour Conserv Recycl. 2017;117:235–48. https://doi.org/10.1016/j.resconrec.2016.10.012
  • [15] Teles MCA, Glória GO, Altoé GR, Amoy Netto P, Margem FM, Braga FO, et al. Evaluation of the Diameter Influence on the Tensile Strength of Pineapple Leaf Fibers (PALF) by Weibull Method. Materials Research. 2015;18:185–92. https://doi.org/10.1590/1516-1439.362514
  • [16] Al-Majali YT, Forshey S, Trembly JP. Effect of natural carbon filler on thermo-oxidative degradation of thermoplastic-based composites. Thermochim Acta. 2022;713:179226. https://doi.org/10.1016/j.tca.2022.179226
  • [17] Ali G. Kinetic study of pyrolysis of waste polystyrene and polyethylene mixture using novel non‐isothermal method. ChemistrySelect. 2024;9(4). https://doi.org/10.1002/slct.202301819
  • [18] Cai J, Xu D, Dong Z, Yu X, Yang Y, Banks SW, Bridgwater AV. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews. 2018;82:2705–15. https://doi.org/10.1016/j.rser.2017.09.113
  • [19] Cordova S, Estala-Rodriguez K, Shafirovich E. Oxidation kinetics of magnesium particles determined by isothermal and non-isothermal methods of thermogravimetric analysis. Combust Flame. 2022;237:111861. https://doi.org/10.1016/j.combustflame.2021.111861
  • [20] White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: A comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91(1):1–33. https://doi.org/10.1016/j.jaap.2011.01.004
  • [21] Tarani E, Chrissafis K. Isoconversional methods: A powerful tool for kinetic analysis and the identification of experimental data quality. Thermochim Acta. 2024;733:179690. https://doi.org/10.1016/j.tca.2024.179690
  • [22] Coats AW, Redfern JP. Kinetic Parameters from Thermogravimetric Data. Nature. 1964;201(4914):68–9. https://doi.org/10.1038/201068a0
  • [23] Aprianti N, Faizal M, Said M, Nasir S, Fudholi A. Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis. Energy. 2023;268:126666. https://doi.org/10.1016/j.energy.2023.126666
  • [24] Cao J, Xiao G, Xu X, Shen D, Jin B. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor. Fuel Processing Technology. 2013;106:41–7. https://doi.org/10.1016/j.fuproc.2012.06.016
  • [25] Deng N, Zhang Y Feng, Wang Y. Thermogravimetric analysis and kinetic study on pyrolysis of representative medical waste composition. Waste Management. 2008;28(9):1572–80. https://doi.org/10.1016/j.wasman.2007.05.024
  • [26] Özsin G, Pütün AE. An investigation on pyrolysis of textile wastes: Kinetics, thermodynamics, in-situ monitoring of evolved gasses and analysis of the char residue. J Environ Chem Eng. 2022;10(3):107748. https://doi.org/10.1016/j.jece.2022.107748
  • [27] Özsin G, Alpaslan Takan M, Takan A, Pütün AE. A combined phenomenological artificial neural network approach for determination of pyrolysis and combustion kinetics of polyvinyl chloride. Int J Energy Res. 2022;46(12):16959–78. https://doi.org/10.1002/er.8361
  • [28] Ma J, Luo H, Li Y, Liu Z, Li D, Gai C, Jiao W. Pyrolysis kinetics and thermodynamic parameters of the hydrochars derived from co-hydrothermal carbonization of sawdust and sewage sludge using thermogravimetric analysis. Bioresour Technol. 2019;282:133–41. https://doi.org/10.1016/j.biortech.2019.03.007
  • [29] Mehmood MA, Ahmad MS, Liu Q, Liu CG, Tahir MH, Aloqbi AA, Tarbiah NI, Alsufiani HM, Gull M. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study. Energy Convers Manag. 2019 ;194:37–45. https://doi.org/10.1016/j.enconman.2019.04.076
  • [30] Raj A, Ghodke PK. Investigation of the effect of metal-impregnated catalyst on the kinetics of lignocellulosic biomass waste pyrolysis. J Environ Chem Eng. 2024;112243. https://doi.org/10.1016/j.jece.2024.112243
  • [31] Tagade A, Kandpal S, Sawarkar AN. Insights into pyrolysis of pearl millet (Pennisetum glaucum) straw through thermogravimetric analysis: Physico-chemical characterization, kinetics, and reaction mechanism. Bioresour Technol. 2024;391:129930. https://doi.org/10.1016/j.biortech.2023.129930
  • [32] Qi R, Xiang A, Wang M, Jiang E, Li Z, Xiao H, Tan X. Combustion characteristics and kinetic analysis for pyrolysis char of torrefied pretreament from camellia shell. Biomass Convers Biorefin. 2024;14(3):3501–12. https://doi.org/10.1007/s13399-022-02486-1
There are 32 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other), Automotive Engineering Materials
Journal Section Articles
Authors

Gamzenur Özsin 0000-0001-5091-5485

Publication Date September 30, 2024
Submission Date February 29, 2024
Acceptance Date July 11, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Özsin, G. (2024). An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry. International Journal of Automotive Science And Technology, 8(3), 312-321. https://doi.org/10.30939/ijastech..1445222
AMA Özsin G. An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry. ijastech. September 2024;8(3):312-321. doi:10.30939/ijastech.1445222
Chicago Özsin, Gamzenur. “An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry”. International Journal of Automotive Science And Technology 8, no. 3 (September 2024): 312-21. https://doi.org/10.30939/ijastech. 1445222.
EndNote Özsin G (September 1, 2024) An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry. International Journal of Automotive Science And Technology 8 3 312–321.
IEEE G. Özsin, “An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry”, ijastech, vol. 8, no. 3, pp. 312–321, 2024, doi: 10.30939/ijastech..1445222.
ISNAD Özsin, Gamzenur. “An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry”. International Journal of Automotive Science And Technology 8/3 (September 2024), 312-321. https://doi.org/10.30939/ijastech. 1445222.
JAMA Özsin G. An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry. ijastech. 2024;8:312–321.
MLA Özsin, Gamzenur. “An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry”. International Journal of Automotive Science And Technology, vol. 8, no. 3, 2024, pp. 312-21, doi:10.30939/ijastech. 1445222.
Vancouver Özsin G. An Investigation on the Thermal Degradation Kinetics of Wood-Polymer Composites Used in Interior Automobile Panels via Non-Isothermal Thermogravimetry. ijastech. 2024;8(3):312-21.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png