Review
BibTex RIS Cite

A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles

Year 2024, Volume: 8 Issue: 3, 369 - 380, 30.09.2024
https://doi.org/10.30939/ijastech..1476366

Abstract

The shift from internal combustion (IC) engines to electric vehicles (EVs) marks a significant transformation in the automotive industry, prompting a comprehensive reassessment of various engineering considerations. Among these, tribological factors play a critical role in ensuring the performance, reliability, and longevity of vehicle components. This review examines the tribological challenges and opportunities posed by the transition to EVs, focusing on key components such as bearings, gears, and braking systems, which face unique operating conditions in electric powertrains compared to their IC counterparts. The paper addresses how electric vehicles encounter distinct tribological scenarios, such as lower operating temperatures but higher torque loads, which demand new materials and lubrication strategies. It also explores how the near absence of internal combustion in EVs affects component wear and the mechanisms of friction reduction. Additionally, the tribological challenges in IC engines are revisited to provide a comparative understanding of how they differ from those in EVs, particularly regarding energy efficiency and frictional losses. This review emphasizes the importance of minimizing wear and friction to maximize energy efficiency, which is crucial for extending vehicle range and improving performance in EVs. By synthesizing the latest research findings and industry advancements, the review offers valuable insights for researchers and engineers involved in the design and optimization of tribological systems for the next generation of electric vehicles.

Ethical Statement

The authors declare that they have no competing financial interests or personal relationships that could appear to have influenced the work reported in this paper.

References

  • [1] Kıyaklı, A. O., & Solmaz, H. (2018). Modeling of an Electric Vehicle with MATLAB/Simulink. International Journal of Au-tomotive Science And Technology, 2(4), 9-15. https://doi.org/10.30939/ijastech..475477.
  • [2] Ekici, Y. E., & Tan, N. (2019). Charge and discharge character-istics of different types of batteries on a hybrid electric vehicle model and selection of suitable battery type for electric vehi-cles. International Journal of Automotive Science And Tech-nology, 3(4), 62-70. https://doi.org/10.30939/ijastech..527971.
  • [3] Kurtulmuş ZN, Karakaya A. Review of mechanical, electro-chemical, electrical, and hybrid energy storage systems used for electric vehicles. International Journal of Automotive Sci-ence and Technology. 2024;8:44-51. https://doi.org/10.30939/ijastech..1357392.
  • [4] Kilic A. Charging techniques, infrastructure, and their influ-ences. Engineering Perspective. 2023;3:68-74. http://dx.doi.org/10.29228/eng.pers.73000.
  • [5] Goud PVS, Chary ASVP. Evaluation of electrification of 4W light commercial vehicle. Engineering Perspective. 2023;3:9-17. http://dx.doi.org/10.29228/eng.pers.69296.
  • [6] Poornesh K, Nivya KP, Sireesha K. A Comparative study on Electric Vehicle and Internal Combustion Engine Vehicles. Proc – Int Conf Smart Electron Commun ICOSEC 2020. 2020;1179-1183. https://doi.org/10.1109/ICOSEC49089.2020.9215386.
  • [7] Xu C, Steubing B, Hu M, Harpprecht C, van der Meide M, Tukker A. Future greenhouse gas emissions of automotive lith-ium-ion battery cell production. Resour Conserv Recycl. 2022;187:106606. https://doi.org/10.1016/j.resconrec.2022.106606.
  • [8] Farfán-Cabrera L. Tribology of electric vehicles: A review of critical components, current state and future improvement trends. Tribology Int.2019;13(8):473-486 https://doi.org/10.1016/J.TRIBOINT.2019.06.029.
  • [9] Chen Y, Jha S, Raut A, Zhang W, Liang H. Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs. Front Mech Eng. 2020;6(10). https://doi.org/10.3389/fmech.2020.571464.
  • [10] Taylor RI. Energy efficiency, emissions, tribological challenges and fluid requirements of electrified passenger car vehicles. Lubricants. 2021;9(7). https://doi.org/10.3390/lubricants9070066.
  • [11] Upadhyay A, Dalal M, Sanghvi N, Singh V, Nair S, Scurtu IC, et al. Electric Vehicles over Contemporary Combustion Engines. IOP Conf Ser Earth Environ Sci. 2021;635(1). 10.1088/1755-1315/635/1/012015.
  • [12] Hasan MS, Nosonovsky M. Triboinformatics: Machine learning algorithms and data topology methods for tribology. Surf Innov. 2022;10(4–5):229–42 https://doi.org/10.1680/jsuin.22.00027.
  • [13] Delbé K. Mass and energy balance of a three-body tribosystem. Lubricants.2022;10(5):95. https://doi.org/10.3390/lubricants10050095.
  • [14] Zimmermann K, Zeidis I, Pivovarov M, Behn C. Motion of two interconnected mass points under action of non-symmetric viscous friction. Arch Appl Mech. 2010;80(11):1317–28. https://doi.org/10.1007/S00419-009-0373-3.
  • [15] Frérot L, Aghababaei R, Molinari JF. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact. J Mech Phys Solids [Internet]. 2018;114:172–84. Available from: https://doi.org/10.1016/j.jmps.2018.02.015.
  • [16] Meng Y, Xu J, Ma L, Jin Z, Prakash B, Ma T, et al. A review of advances in tribology in 2020–2021. Friction. 2022;10(10):1443–595. http://dx.doi.org/10.1007/s40544-022-0685-7.
  • [17] Kumar V, Sinha SK, Agarwal AK. Wear evaluation of engine piston rings coated with dual layer hard and soft coatings. J Tribol. 2019;141(3):3–13. 10.1115/1.4041762.
  • [18] Tung SC, McMillan ML. Automotive tribology overview of current advances and challenges for the future. Tribol Int. 2004;37(7):517–36. https://doi.org/10.1016/j.triboint.2004.01.013.
  • [19] Holmberg K, Erdemir A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int. 2019;135:389–96. https://doi.org/10.1016/j.triboint.2019.03.024.
  • [20] Liu J, Zhang Y, Liao B. A review on preparation process and tribological performance of coatings for internal combustion engine piston ring. Adv Mech Eng. 2023;15(5):1–19. https://doi.org/10.1177/16878132231175752.
  • [21] Tie SF, Tan CW. A review of energy sources and energy management system in electric vehicles. Renew Sustain Energy Rev [Internet]. 2013;20:82–102. Available from: http://dx.doi.org/10.1016/j.rser.2012.11.077.
  • [22] ESTHER I, DINAHARAN I, MURUGAN N. Microstructure and wear characterization of AA2124/4wt.%B4C nano-composite coating on Ti−6Al−4V alloy using friction surfacing. Trans Nonferrous Met Soc China (English Ed [Internet]. 2019;29(6):1263–74. Available from: http://dx.doi.org/10.1016/S1003-6326(19)65033-8.
  • [23] Fry BM, Moody G, Spikes HA, Wong JSS. Adsorption of Organic Friction Modifier Additives. Langmuir. 2020;36(5):1147–55. https://doi.org/10.1021/acs.langmuir.9b03668.
  • [24] Baena LM, Vásquez FA, Calderón JA. Corrosion assessment of metals in bioethanol-gasoline blends using electrochemical impedance spectroscopy. Heliyon. 2021;7(7). https://doi.org/10.1016/j.heliyon.2021.e07585.
  • [25] Vlădescu SC, Fowell M, Mattsson L, Reddyhoff T. The effects of laser surface texture applied to internal combustion engine journal bearing shells – An experimental study. Tribol Int. 2019;134:317–27. Available from: https://doi.org/10.1016/j.triboint.2019.02.009.
  • [26] Zhao XW, Peng J, Gao SH, Zhu KY, Zhao YH, Li XH, et al. Self-healing anti-icing coatings prepared from PDMS polyurea. Sci China Technol Sci. 2021;64(7):1535–43. https://doi.org/10.1007/s11431-021-1831-7.
  • [27] AlTarawneh M, AlJuboori S. The effect of nanolubrication on wear and friction resistance between sliding surfaces. Ind Lubr Tribol. 2023;75(5):526–35. 10.1108/ILT-08-2022-0234.
  • [28] Devarajan DK, Rangasamy B, Amirtharaj Mosas KK. State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications. Ceramics. 2023;6(1):301–29. https://doi.org/10.3390/ceramics6010019.
  • [29] Taylor RI, Sherrington I. The Environmental and Economic Importance of Mixed and Boundary Friction. Lubricants. 2024;12(5):152.https://doi.org/10.3390/lubricants12050152.
  • [30] Opia AC, Abdollah MF Bin, Hamid MKA, Veza I. A Review on bio-lubricants as an alternative green product: Tribological performance, mechanism, challenges and future opportunities. Tribol Online. 2023;18(2):18–33. https://doi.org/10.2474/trol.18.18.
  • [31] Das HS, Tan CW, Yatim AHM. Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies. Renew Sustain Energy Rev [Internet]. 2017;76(February):268–91. Available from: http://dx.doi.org/10.1016/j.rser.2017.03.056.
  • [32] Farfan-Cabrera LI. Tribology of electric vehicles: A review of critical components, current state and future improvement trends. Tribol Int [Internet]. 2019;138(June):473–86. Available from: https://doi.org/10.1016/j.triboint.2019.06.029.
  • [33] Shah R, Gashi B, González-Poggini S, Colet-Lagrille M, Rosenkranz A. Recent trends in batteries and lubricants for electric vehicles. Adv Mech Eng. 2021;13(5):1–10. 10.3390/ceramics6010019.
  • [34] Popescu M, Goss J, Staton DA, Hawkins D, Chong YC, Boglietti A. Electrical Vehicles - Practical Solutions for Power Traction Motor Systems. IEEE Trans Ind Appl. 2018;54(3):2751–62 https://doi.org/10.1109/TIA.2018.2792459.
  • [35] Doyle A, Muneer T. Traction energy and battery performance modelling [Internet]. Electric Vehicles: Prospects and Challenges. Elsevier Inc.; 2017. 93–124 p. Available from: http://dx.doi.org/10.1016/B978-0-12-803021-9.00002-1.
  • [36] Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int [Internet]. 2012;47:221–34. Available from: http://dx.doi.org/10.1016/j.triboint.2011.11.022.
  • [37] Huang X, Yang B, Wang Y. A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling. Appl Math Model [Internet]. 2019;72:623–49. Available from: https://doi.org/10.1016/j.apm.2019.03.008.
  • [38] Ali I, Basheer AA, Kucherova A, Memetov N, Pasko T, Ovchinnikov K, et al. Advances in carbon nanomaterials as lubricants modifiers. J Mol Liq [Internet]. 2019;279:251–66. Available from: https://doi.org/10.1016/j.molliq.2019.01.113.
  • [39] Zhang P, Morris M, Doshi D. Materials development for lowering rolling resistance of tires. Rubber Chem Technol. 2016;89(1):79–116. https://doi.org/10.5254/RCT.16.83805.
  • [40] Farooq MU. Tribology of electric vehicles – a comprehensive survey of recent developments in components and key future avenues for surfaces and interfaces research. https://doi.org/10.1016/J.TRIBOINT.2019.06.029.
  • [41] Rosenkranz A, Marian M, Profito FJ, Aragon N, Shah R. The Use of Artificial Intelligence in Tribology — A Perspective. 2021;1–11. https://doi.org/10.3390/lubricants9010002.
  • [42] Arena F, Collotta M, Luca L, Ruggieri M, Termine FG. Predictive Maintenance in the Automotive Sector: A Literature Review. Math Comput Appl. 2021;27(1):2. https://doi.org/10.3390/mca27010002.
  • [43] Morhard B, Schweigert D, Mileti M, Sedlmair M, Lohner T, Stahl K. Efficient lubrication of a high-speed electromechanical powertrain with holistic thermal management. Forsch im Ingenieurwesen/Engineering Res. 2021;85(2):443–56.https://doi.org/10.1007/s10010-020-00423-0.
  • [44] Guo K, Yang Z, Yu CH, Buehler MJ. Artificial intelligence and machine learning in design of mechanical materials. Mater Horizons. 2021;8(4):1153–72. https://doi.org/10.1039/d0mh01451f.
  • [45] Dizqah AM, Lenzo B, Sorniotti A, Gruber P, Fallah S, De Smet J. A Fast and Parametric Torque Distribution Strategy for Four-Wheel-Drive Energy-Efficient Electric Vehicles. IEEE Trans Ind Electron. 2016;63(7):4367–76. https://doi.org/10.1109/TIE.2016.2540584.
  • [46] Shah R, Gashi B, Rosenkranz A. Latest developments in designing advanced lubricants and greases for electric vehicles—An overview. Lubr Sci. 2022;34(8):515–26. https://doi.org/10.1002/ls.1605.
  • [47] He Q, Li A, Guo Y, Liu S, Kong LH. Effect of nanometer silicon dioxide on the frictional behavior of lubricating grease. Nanomater Nanotechnol. 2017;7:1–9. https://doi.org/10.1177/1847980417725933.
  • [48] Li J, Zhai C, Yin H, Wang A, Shen L. Impact of polydimethylsiloxanes on physicochemical and tribological properties of naphthenic mineral oil (KN 4010)-based titanium complex grease. Chinese J Chem Eng [Internet]. 2019;27(4):944–8.Available from: https://doi.org/10.1016/j.cjche.2018.09.002.
  • [49] Lugt PM. Modern advancements in lubricating grease technology. Tribol Int [Internet]. 2016;97:467–77. Available from: http://dx.doi.org/10.1016/j.triboint.2016.01.045.
  • [50] Nikbakhsh A, Izadfar HR, Jazaeri M. Classification and comparison of rotor temperature estimation methods of squirrel cage induction motors. Meas J Int Meas Confed [Internet]. 2019;145:779–802. Available from: https://doi.org/10.1016/j.measurement.2019.03.072.
  • [51] Ouyang JH, Li YF, Zhang YZ, Wang YM, Wang YJ. High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review. Lubricants. 2022;10(8):1–59. https://doi.org/10.3390/lubricants10080177.
  • [52] Qin K, Feng Q, Li H, Zou S, Dou M, Huang F. General Situation of Solid Lubricant Coatings. IOP Conf Ser Earth Environ Sci. 2020;508(1). 10.1088/1755-1315/508/1/012219.
Year 2024, Volume: 8 Issue: 3, 369 - 380, 30.09.2024
https://doi.org/10.30939/ijastech..1476366

Abstract

References

  • [1] Kıyaklı, A. O., & Solmaz, H. (2018). Modeling of an Electric Vehicle with MATLAB/Simulink. International Journal of Au-tomotive Science And Technology, 2(4), 9-15. https://doi.org/10.30939/ijastech..475477.
  • [2] Ekici, Y. E., & Tan, N. (2019). Charge and discharge character-istics of different types of batteries on a hybrid electric vehicle model and selection of suitable battery type for electric vehi-cles. International Journal of Automotive Science And Tech-nology, 3(4), 62-70. https://doi.org/10.30939/ijastech..527971.
  • [3] Kurtulmuş ZN, Karakaya A. Review of mechanical, electro-chemical, electrical, and hybrid energy storage systems used for electric vehicles. International Journal of Automotive Sci-ence and Technology. 2024;8:44-51. https://doi.org/10.30939/ijastech..1357392.
  • [4] Kilic A. Charging techniques, infrastructure, and their influ-ences. Engineering Perspective. 2023;3:68-74. http://dx.doi.org/10.29228/eng.pers.73000.
  • [5] Goud PVS, Chary ASVP. Evaluation of electrification of 4W light commercial vehicle. Engineering Perspective. 2023;3:9-17. http://dx.doi.org/10.29228/eng.pers.69296.
  • [6] Poornesh K, Nivya KP, Sireesha K. A Comparative study on Electric Vehicle and Internal Combustion Engine Vehicles. Proc – Int Conf Smart Electron Commun ICOSEC 2020. 2020;1179-1183. https://doi.org/10.1109/ICOSEC49089.2020.9215386.
  • [7] Xu C, Steubing B, Hu M, Harpprecht C, van der Meide M, Tukker A. Future greenhouse gas emissions of automotive lith-ium-ion battery cell production. Resour Conserv Recycl. 2022;187:106606. https://doi.org/10.1016/j.resconrec.2022.106606.
  • [8] Farfán-Cabrera L. Tribology of electric vehicles: A review of critical components, current state and future improvement trends. Tribology Int.2019;13(8):473-486 https://doi.org/10.1016/J.TRIBOINT.2019.06.029.
  • [9] Chen Y, Jha S, Raut A, Zhang W, Liang H. Performance Characteristics of Lubricants in Electric and Hybrid Vehicles: A Review of Current and Future Needs. Front Mech Eng. 2020;6(10). https://doi.org/10.3389/fmech.2020.571464.
  • [10] Taylor RI. Energy efficiency, emissions, tribological challenges and fluid requirements of electrified passenger car vehicles. Lubricants. 2021;9(7). https://doi.org/10.3390/lubricants9070066.
  • [11] Upadhyay A, Dalal M, Sanghvi N, Singh V, Nair S, Scurtu IC, et al. Electric Vehicles over Contemporary Combustion Engines. IOP Conf Ser Earth Environ Sci. 2021;635(1). 10.1088/1755-1315/635/1/012015.
  • [12] Hasan MS, Nosonovsky M. Triboinformatics: Machine learning algorithms and data topology methods for tribology. Surf Innov. 2022;10(4–5):229–42 https://doi.org/10.1680/jsuin.22.00027.
  • [13] Delbé K. Mass and energy balance of a three-body tribosystem. Lubricants.2022;10(5):95. https://doi.org/10.3390/lubricants10050095.
  • [14] Zimmermann K, Zeidis I, Pivovarov M, Behn C. Motion of two interconnected mass points under action of non-symmetric viscous friction. Arch Appl Mech. 2010;80(11):1317–28. https://doi.org/10.1007/S00419-009-0373-3.
  • [15] Frérot L, Aghababaei R, Molinari JF. A mechanistic understanding of the wear coefficient: From single to multiple asperities contact. J Mech Phys Solids [Internet]. 2018;114:172–84. Available from: https://doi.org/10.1016/j.jmps.2018.02.015.
  • [16] Meng Y, Xu J, Ma L, Jin Z, Prakash B, Ma T, et al. A review of advances in tribology in 2020–2021. Friction. 2022;10(10):1443–595. http://dx.doi.org/10.1007/s40544-022-0685-7.
  • [17] Kumar V, Sinha SK, Agarwal AK. Wear evaluation of engine piston rings coated with dual layer hard and soft coatings. J Tribol. 2019;141(3):3–13. 10.1115/1.4041762.
  • [18] Tung SC, McMillan ML. Automotive tribology overview of current advances and challenges for the future. Tribol Int. 2004;37(7):517–36. https://doi.org/10.1016/j.triboint.2004.01.013.
  • [19] Holmberg K, Erdemir A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol Int. 2019;135:389–96. https://doi.org/10.1016/j.triboint.2019.03.024.
  • [20] Liu J, Zhang Y, Liao B. A review on preparation process and tribological performance of coatings for internal combustion engine piston ring. Adv Mech Eng. 2023;15(5):1–19. https://doi.org/10.1177/16878132231175752.
  • [21] Tie SF, Tan CW. A review of energy sources and energy management system in electric vehicles. Renew Sustain Energy Rev [Internet]. 2013;20:82–102. Available from: http://dx.doi.org/10.1016/j.rser.2012.11.077.
  • [22] ESTHER I, DINAHARAN I, MURUGAN N. Microstructure and wear characterization of AA2124/4wt.%B4C nano-composite coating on Ti−6Al−4V alloy using friction surfacing. Trans Nonferrous Met Soc China (English Ed [Internet]. 2019;29(6):1263–74. Available from: http://dx.doi.org/10.1016/S1003-6326(19)65033-8.
  • [23] Fry BM, Moody G, Spikes HA, Wong JSS. Adsorption of Organic Friction Modifier Additives. Langmuir. 2020;36(5):1147–55. https://doi.org/10.1021/acs.langmuir.9b03668.
  • [24] Baena LM, Vásquez FA, Calderón JA. Corrosion assessment of metals in bioethanol-gasoline blends using electrochemical impedance spectroscopy. Heliyon. 2021;7(7). https://doi.org/10.1016/j.heliyon.2021.e07585.
  • [25] Vlădescu SC, Fowell M, Mattsson L, Reddyhoff T. The effects of laser surface texture applied to internal combustion engine journal bearing shells – An experimental study. Tribol Int. 2019;134:317–27. Available from: https://doi.org/10.1016/j.triboint.2019.02.009.
  • [26] Zhao XW, Peng J, Gao SH, Zhu KY, Zhao YH, Li XH, et al. Self-healing anti-icing coatings prepared from PDMS polyurea. Sci China Technol Sci. 2021;64(7):1535–43. https://doi.org/10.1007/s11431-021-1831-7.
  • [27] AlTarawneh M, AlJuboori S. The effect of nanolubrication on wear and friction resistance between sliding surfaces. Ind Lubr Tribol. 2023;75(5):526–35. 10.1108/ILT-08-2022-0234.
  • [28] Devarajan DK, Rangasamy B, Amirtharaj Mosas KK. State-of-the-Art Developments in Advanced Hard Ceramic Coatings Using PVD Techniques for High-Temperature Tribological Applications. Ceramics. 2023;6(1):301–29. https://doi.org/10.3390/ceramics6010019.
  • [29] Taylor RI, Sherrington I. The Environmental and Economic Importance of Mixed and Boundary Friction. Lubricants. 2024;12(5):152.https://doi.org/10.3390/lubricants12050152.
  • [30] Opia AC, Abdollah MF Bin, Hamid MKA, Veza I. A Review on bio-lubricants as an alternative green product: Tribological performance, mechanism, challenges and future opportunities. Tribol Online. 2023;18(2):18–33. https://doi.org/10.2474/trol.18.18.
  • [31] Das HS, Tan CW, Yatim AHM. Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies. Renew Sustain Energy Rev [Internet]. 2017;76(February):268–91. Available from: http://dx.doi.org/10.1016/j.rser.2017.03.056.
  • [32] Farfan-Cabrera LI. Tribology of electric vehicles: A review of critical components, current state and future improvement trends. Tribol Int [Internet]. 2019;138(June):473–86. Available from: https://doi.org/10.1016/j.triboint.2019.06.029.
  • [33] Shah R, Gashi B, González-Poggini S, Colet-Lagrille M, Rosenkranz A. Recent trends in batteries and lubricants for electric vehicles. Adv Mech Eng. 2021;13(5):1–10. 10.3390/ceramics6010019.
  • [34] Popescu M, Goss J, Staton DA, Hawkins D, Chong YC, Boglietti A. Electrical Vehicles - Practical Solutions for Power Traction Motor Systems. IEEE Trans Ind Appl. 2018;54(3):2751–62 https://doi.org/10.1109/TIA.2018.2792459.
  • [35] Doyle A, Muneer T. Traction energy and battery performance modelling [Internet]. Electric Vehicles: Prospects and Challenges. Elsevier Inc.; 2017. 93–124 p. Available from: http://dx.doi.org/10.1016/B978-0-12-803021-9.00002-1.
  • [36] Holmberg K, Andersson P, Erdemir A. Global energy consumption due to friction in passenger cars. Tribol Int [Internet]. 2012;47:221–34. Available from: http://dx.doi.org/10.1016/j.triboint.2011.11.022.
  • [37] Huang X, Yang B, Wang Y. A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling. Appl Math Model [Internet]. 2019;72:623–49. Available from: https://doi.org/10.1016/j.apm.2019.03.008.
  • [38] Ali I, Basheer AA, Kucherova A, Memetov N, Pasko T, Ovchinnikov K, et al. Advances in carbon nanomaterials as lubricants modifiers. J Mol Liq [Internet]. 2019;279:251–66. Available from: https://doi.org/10.1016/j.molliq.2019.01.113.
  • [39] Zhang P, Morris M, Doshi D. Materials development for lowering rolling resistance of tires. Rubber Chem Technol. 2016;89(1):79–116. https://doi.org/10.5254/RCT.16.83805.
  • [40] Farooq MU. Tribology of electric vehicles – a comprehensive survey of recent developments in components and key future avenues for surfaces and interfaces research. https://doi.org/10.1016/J.TRIBOINT.2019.06.029.
  • [41] Rosenkranz A, Marian M, Profito FJ, Aragon N, Shah R. The Use of Artificial Intelligence in Tribology — A Perspective. 2021;1–11. https://doi.org/10.3390/lubricants9010002.
  • [42] Arena F, Collotta M, Luca L, Ruggieri M, Termine FG. Predictive Maintenance in the Automotive Sector: A Literature Review. Math Comput Appl. 2021;27(1):2. https://doi.org/10.3390/mca27010002.
  • [43] Morhard B, Schweigert D, Mileti M, Sedlmair M, Lohner T, Stahl K. Efficient lubrication of a high-speed electromechanical powertrain with holistic thermal management. Forsch im Ingenieurwesen/Engineering Res. 2021;85(2):443–56.https://doi.org/10.1007/s10010-020-00423-0.
  • [44] Guo K, Yang Z, Yu CH, Buehler MJ. Artificial intelligence and machine learning in design of mechanical materials. Mater Horizons. 2021;8(4):1153–72. https://doi.org/10.1039/d0mh01451f.
  • [45] Dizqah AM, Lenzo B, Sorniotti A, Gruber P, Fallah S, De Smet J. A Fast and Parametric Torque Distribution Strategy for Four-Wheel-Drive Energy-Efficient Electric Vehicles. IEEE Trans Ind Electron. 2016;63(7):4367–76. https://doi.org/10.1109/TIE.2016.2540584.
  • [46] Shah R, Gashi B, Rosenkranz A. Latest developments in designing advanced lubricants and greases for electric vehicles—An overview. Lubr Sci. 2022;34(8):515–26. https://doi.org/10.1002/ls.1605.
  • [47] He Q, Li A, Guo Y, Liu S, Kong LH. Effect of nanometer silicon dioxide on the frictional behavior of lubricating grease. Nanomater Nanotechnol. 2017;7:1–9. https://doi.org/10.1177/1847980417725933.
  • [48] Li J, Zhai C, Yin H, Wang A, Shen L. Impact of polydimethylsiloxanes on physicochemical and tribological properties of naphthenic mineral oil (KN 4010)-based titanium complex grease. Chinese J Chem Eng [Internet]. 2019;27(4):944–8.Available from: https://doi.org/10.1016/j.cjche.2018.09.002.
  • [49] Lugt PM. Modern advancements in lubricating grease technology. Tribol Int [Internet]. 2016;97:467–77. Available from: http://dx.doi.org/10.1016/j.triboint.2016.01.045.
  • [50] Nikbakhsh A, Izadfar HR, Jazaeri M. Classification and comparison of rotor temperature estimation methods of squirrel cage induction motors. Meas J Int Meas Confed [Internet]. 2019;145:779–802. Available from: https://doi.org/10.1016/j.measurement.2019.03.072.
  • [51] Ouyang JH, Li YF, Zhang YZ, Wang YM, Wang YJ. High-Temperature Solid Lubricants and Self-Lubricating Composites: A Critical Review. Lubricants. 2022;10(8):1–59. https://doi.org/10.3390/lubricants10080177.
  • [52] Qin K, Feng Q, Li H, Zou S, Dou M, Huang F. General Situation of Solid Lubricant Coatings. IOP Conf Ser Earth Environ Sci. 2020;508(1). 10.1088/1755-1315/508/1/012219.
There are 52 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains, Internal Combustion Engines
Journal Section Articles
Authors

Biniyam Ayele Abebe 0000-0002-2935-4254

Samet Çelebi 0000-0002-4616-3935

Recep Kılıç 0000-0003-1580-1997

Publication Date September 30, 2024
Submission Date May 2, 2024
Acceptance Date July 5, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Abebe, B. A., Çelebi, S., & Kılıç, R. (2024). A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles. International Journal of Automotive Science And Technology, 8(3), 369-380. https://doi.org/10.30939/ijastech..1476366
AMA Abebe BA, Çelebi S, Kılıç R. A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles. ijastech. September 2024;8(3):369-380. doi:10.30939/ijastech.1476366
Chicago Abebe, Biniyam Ayele, Samet Çelebi, and Recep Kılıç. “A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles”. International Journal of Automotive Science And Technology 8, no. 3 (September 2024): 369-80. https://doi.org/10.30939/ijastech. 1476366.
EndNote Abebe BA, Çelebi S, Kılıç R (September 1, 2024) A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles. International Journal of Automotive Science And Technology 8 3 369–380.
IEEE B. A. Abebe, S. Çelebi, and R. Kılıç, “A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles”, ijastech, vol. 8, no. 3, pp. 369–380, 2024, doi: 10.30939/ijastech..1476366.
ISNAD Abebe, Biniyam Ayele et al. “A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles”. International Journal of Automotive Science And Technology 8/3 (September 2024), 369-380. https://doi.org/10.30939/ijastech. 1476366.
JAMA Abebe BA, Çelebi S, Kılıç R. A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles. ijastech. 2024;8:369–380.
MLA Abebe, Biniyam Ayele et al. “A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles”. International Journal of Automotive Science And Technology, vol. 8, no. 3, 2024, pp. 369-80, doi:10.30939/ijastech. 1476366.
Vancouver Abebe BA, Çelebi S, Kılıç R. A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles. ijastech. 2024;8(3):369-80.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png