Research Article
BibTex RIS Cite

Numerical Investigation of Flow Characteristics in Internally Flowing Pipes with Varying Roughness and Helical Angles of Vortex Generators

Year 2024, Volume: 8 Issue: 3, 381 - 386, 30.09.2024
https://doi.org/10.30939/ijastech..1509396

Abstract

In this study, the turbulent behavior inside a pipe containing an aluminum helical vortex generator plate was investigated using computational fluid dynamics (CFD) methods, considering different plate roughness and helical angle values. Accordingly, numerical analyses of velocity and pressure distributions for a liquid flow with a constant inlet velocity of 0.5 m/s and four different helical angles were performed and compared in a computer software. To observe the effects of the roughness values of the metal plate on flow behavior, analyses were conducted for three different roughness values for each helical angle and the results were compared and interpreted. As a result of the study, the combination of a roughness value of 0.04 and a helical angle of 0° led to the highest pressure and velocity values, while the same roughness value combined with a 270° helical angle resulted in the lowest pressure and velocity values. Detailed analysis showed that helical angles (90° and 180°) presented moderate pressure and velocity values, indicating a non-linear relationship between helical angle and flow characteristics. The results demonstrate that optimizing the helical angle and roughness is crucial for enhancing the efficiency of vortex generators. This way, a design will be developed to prevent performance degradation in industrial applications that require flow efficiency and pressure management.

References

  • [1] Siddique H, et al. Effect of swirl flow on heat transfer characteristics in a circular pipe. Paper presented at the AIP Conference Proceedings. 2016. http://dx.doi.org/10.1063/1.4958419
  • [2] Behçet R, Yakut AK, Argunhan Z. The effect of rotary, type placed in entrance of heat exchanger on heat transfer and frictional loss. Energy education science and technology part A: Energy science and research. 2021;28:239-248. http://dx.doi.org/10.31202/ecjse.871896
  • [3] Acır A, Canlı ME, Ata İ, Tanürün HE. Effects of a circular-shaped turbulator having varying hole numbers on energy and exergy efficiencies of a solar air heater. International Journal of Ambient Energy.2018;1-10. http://dx.doi.org/10.1080/01430750.2017.1423385
  • [4] Chen B, et al. Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe Part 2: Fluid flow. International Journal of Heat and Mass Transfer. 2016;97:1012-1028. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.129
  • [5] Zhang XJ, Hoshino K. Microfluidics and Micro Total Analytical Systems. Molecular Sensors and Nanodevices. 2014. http://dx.doi.org/10.1016/B978-0-12-814862-4.00003-X
  • [6] Bhatti MS and Shah RK. Turbulent and Transition Flow Convective Heat Transfer in Ducts. In Handbook of Single-Phase Convective Heat Transfer. ed. S. Kakaç. R. K. Shah. and W. Aung. New York: Wiley Interscience. 1987.
  • [7] Fang X, Xu L, Chen Y, Chen W. Correlations for friction factor of turbulent pipe flow under supercritical pressure: Review and a new correlation. Progress in Nuclear Energy. 2019. http://dx.doi.org/10.1016/j.pnucene.2019.103085
  • [8] Yilmaz M, et al. Enhancement of heat transfer by turbulent decaying swirl flow. Energy conversion and management. 1999;40(13):1365-1376. http://dx.doi.org/10.1016/S0196-8904(99)00030-8
  • [9] Bilen K, et al. Thermo-hydraulic performance of tube with decaying swirl flow generators. Applied thermal engineering. 2022; 200:117643.http://dx.doi.org/10.1016/j.applthermaleng.2021.117643
  • [10] Yeşildal F. Numerical Optimization of Heat Transfer Parameters in a Pipe with Decaying Swirl Flow Generators Using Response Surface Methodology. International Journal of Innovative Research and Reviews. 2021;5(2):9-14
  • [11] Banerjee C, Urankar S, Raikar S, Suresh D. Numerical Study of Decaying Swirling Flow in an Annulus. Engineering Applications of Computational Fluid Mechanics. 2020;14(1):1198-1214.
  • [12] Rocha AD, Bannwart AC, Ganzarolli MM. Numerical and experimental study of an axially induced swirling pipe flow. International journal of heat and fluid flow. 2015;53:81–90. https://doi.org/10.1016/j.ijheatfluidflow.2015.02.003
  • [13] Saqr KM, et al. Effects of swirl intensity on heat transfer and entropy generation in turbulent decaying swirl flow. Applied thermal engineering. 2014;70(1):486-493. https://doi.org/10.1016/j.applthermaleng.2014.05.059
  • [14] Kurtbaş İ, Gülçimen F, Kılıçarslan A, Kaya M. Effect of swirl generator inserted into a tube on exergy transfer: decaying flow. Experimental Heat Transfer. 2014;27(5):472–487. http://dx.doi.org/10.1080/08916152.2013.803175
  • [15] Baysal E, Solmaz Ö, Ökten M, Başeski Y. İç İçe Borulu Isı Değiştiricide Zıt Akışta Türbülatör Kullanımının Basınç Değişimine Etkisinin Sayısal Olarak İncelenmesi. El-Cezeri Fen ve Mühendislik Dergisi. 2021;8(2):817-826. https://doi.org/10.31202/ecjse.871896
  • [16] Solmaz Ö, Baysal E, Ökten M. Numerical Investigation and Machine Learning-Based Prediction of the Effect of Using Ring Turbulators on Heat Transfer Characteristics in a Counterflow Heat Exchanger. Recent Innovations in Chemical Engineering. 2023;16(5):362-378. http://dx.doi.org/10.2174/0124055204273603231004071130
  • [17] Karakaya H, Durmuş A. Heat Transfer and Exergy Loss in Conical Spring Turbulators. International Journal of Heat and Mass Transfer. 2013;60:756-762. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.054
  • [18] Özakın AN, Öner İV. Yatay Bir Boruda Dışarıdan Oluşturulan Farklı Geometrilerdeki Dönel Akışın Isı ve Akış Karakteristiklerinin Sayısal Analizi. The Black Sea Journal of Sciences.2022;12(1):414-424. https://doi.org/10.31466/kfbd.1085259
  • [19] Thabet S, Thabit T.H, Jasim Y.A. CFD Analysis of a Backward Facing Step Flows. International Journal of Automotive Science and Technology 2018; 2(3): 10-16. https://doi.org/10.30939/ijastech..447973
  • [20] Alp Arslan T, Bayrakçeken H, Yavuz H. CFD Analysis of sloshing in the fuel tank of a heavy vehicle. International Journal of Automotive Science and Technology 2023; 7(4): 340-348. https://doi.org/10.30939/ijastech..1360466
Year 2024, Volume: 8 Issue: 3, 381 - 386, 30.09.2024
https://doi.org/10.30939/ijastech..1509396

Abstract

References

  • [1] Siddique H, et al. Effect of swirl flow on heat transfer characteristics in a circular pipe. Paper presented at the AIP Conference Proceedings. 2016. http://dx.doi.org/10.1063/1.4958419
  • [2] Behçet R, Yakut AK, Argunhan Z. The effect of rotary, type placed in entrance of heat exchanger on heat transfer and frictional loss. Energy education science and technology part A: Energy science and research. 2021;28:239-248. http://dx.doi.org/10.31202/ecjse.871896
  • [3] Acır A, Canlı ME, Ata İ, Tanürün HE. Effects of a circular-shaped turbulator having varying hole numbers on energy and exergy efficiencies of a solar air heater. International Journal of Ambient Energy.2018;1-10. http://dx.doi.org/10.1080/01430750.2017.1423385
  • [4] Chen B, et al. Fluid dynamics and heat transfer investigations of swirling decaying flow in an annular pipe Part 2: Fluid flow. International Journal of Heat and Mass Transfer. 2016;97:1012-1028. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.07.129
  • [5] Zhang XJ, Hoshino K. Microfluidics and Micro Total Analytical Systems. Molecular Sensors and Nanodevices. 2014. http://dx.doi.org/10.1016/B978-0-12-814862-4.00003-X
  • [6] Bhatti MS and Shah RK. Turbulent and Transition Flow Convective Heat Transfer in Ducts. In Handbook of Single-Phase Convective Heat Transfer. ed. S. Kakaç. R. K. Shah. and W. Aung. New York: Wiley Interscience. 1987.
  • [7] Fang X, Xu L, Chen Y, Chen W. Correlations for friction factor of turbulent pipe flow under supercritical pressure: Review and a new correlation. Progress in Nuclear Energy. 2019. http://dx.doi.org/10.1016/j.pnucene.2019.103085
  • [8] Yilmaz M, et al. Enhancement of heat transfer by turbulent decaying swirl flow. Energy conversion and management. 1999;40(13):1365-1376. http://dx.doi.org/10.1016/S0196-8904(99)00030-8
  • [9] Bilen K, et al. Thermo-hydraulic performance of tube with decaying swirl flow generators. Applied thermal engineering. 2022; 200:117643.http://dx.doi.org/10.1016/j.applthermaleng.2021.117643
  • [10] Yeşildal F. Numerical Optimization of Heat Transfer Parameters in a Pipe with Decaying Swirl Flow Generators Using Response Surface Methodology. International Journal of Innovative Research and Reviews. 2021;5(2):9-14
  • [11] Banerjee C, Urankar S, Raikar S, Suresh D. Numerical Study of Decaying Swirling Flow in an Annulus. Engineering Applications of Computational Fluid Mechanics. 2020;14(1):1198-1214.
  • [12] Rocha AD, Bannwart AC, Ganzarolli MM. Numerical and experimental study of an axially induced swirling pipe flow. International journal of heat and fluid flow. 2015;53:81–90. https://doi.org/10.1016/j.ijheatfluidflow.2015.02.003
  • [13] Saqr KM, et al. Effects of swirl intensity on heat transfer and entropy generation in turbulent decaying swirl flow. Applied thermal engineering. 2014;70(1):486-493. https://doi.org/10.1016/j.applthermaleng.2014.05.059
  • [14] Kurtbaş İ, Gülçimen F, Kılıçarslan A, Kaya M. Effect of swirl generator inserted into a tube on exergy transfer: decaying flow. Experimental Heat Transfer. 2014;27(5):472–487. http://dx.doi.org/10.1080/08916152.2013.803175
  • [15] Baysal E, Solmaz Ö, Ökten M, Başeski Y. İç İçe Borulu Isı Değiştiricide Zıt Akışta Türbülatör Kullanımının Basınç Değişimine Etkisinin Sayısal Olarak İncelenmesi. El-Cezeri Fen ve Mühendislik Dergisi. 2021;8(2):817-826. https://doi.org/10.31202/ecjse.871896
  • [16] Solmaz Ö, Baysal E, Ökten M. Numerical Investigation and Machine Learning-Based Prediction of the Effect of Using Ring Turbulators on Heat Transfer Characteristics in a Counterflow Heat Exchanger. Recent Innovations in Chemical Engineering. 2023;16(5):362-378. http://dx.doi.org/10.2174/0124055204273603231004071130
  • [17] Karakaya H, Durmuş A. Heat Transfer and Exergy Loss in Conical Spring Turbulators. International Journal of Heat and Mass Transfer. 2013;60:756-762. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.054
  • [18] Özakın AN, Öner İV. Yatay Bir Boruda Dışarıdan Oluşturulan Farklı Geometrilerdeki Dönel Akışın Isı ve Akış Karakteristiklerinin Sayısal Analizi. The Black Sea Journal of Sciences.2022;12(1):414-424. https://doi.org/10.31466/kfbd.1085259
  • [19] Thabet S, Thabit T.H, Jasim Y.A. CFD Analysis of a Backward Facing Step Flows. International Journal of Automotive Science and Technology 2018; 2(3): 10-16. https://doi.org/10.30939/ijastech..447973
  • [20] Alp Arslan T, Bayrakçeken H, Yavuz H. CFD Analysis of sloshing in the fuel tank of a heavy vehicle. International Journal of Automotive Science and Technology 2023; 7(4): 340-348. https://doi.org/10.30939/ijastech..1360466
There are 20 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains, Automotive Safety Engineering, Automotive Engineering Materials, Heat Transfer in Automotive
Journal Section Articles
Authors

Fuat Tan 0000-0002-4194-5591

Alp Eren Dede 0009-0009-5391-8695

Publication Date September 30, 2024
Submission Date July 2, 2024
Acceptance Date August 15, 2024
Published in Issue Year 2024 Volume: 8 Issue: 3

Cite

APA Tan, F., & Dede, A. E. (2024). Numerical Investigation of Flow Characteristics in Internally Flowing Pipes with Varying Roughness and Helical Angles of Vortex Generators. International Journal of Automotive Science And Technology, 8(3), 381-386. https://doi.org/10.30939/ijastech..1509396
AMA Tan F, Dede AE. Numerical Investigation of Flow Characteristics in Internally Flowing Pipes with Varying Roughness and Helical Angles of Vortex Generators. IJASTECH. September 2024;8(3):381-386. doi:10.30939/ijastech.1509396
Chicago Tan, Fuat, and Alp Eren Dede. “Numerical Investigation of Flow Characteristics in Internally Flowing Pipes With Varying Roughness and Helical Angles of Vortex Generators”. International Journal of Automotive Science And Technology 8, no. 3 (September 2024): 381-86. https://doi.org/10.30939/ijastech. 1509396.
EndNote Tan F, Dede AE (September 1, 2024) Numerical Investigation of Flow Characteristics in Internally Flowing Pipes with Varying Roughness and Helical Angles of Vortex Generators. International Journal of Automotive Science And Technology 8 3 381–386.
IEEE F. Tan and A. E. Dede, “Numerical Investigation of Flow Characteristics in Internally Flowing Pipes with Varying Roughness and Helical Angles of Vortex Generators”, IJASTECH, vol. 8, no. 3, pp. 381–386, 2024, doi: 10.30939/ijastech..1509396.
ISNAD Tan, Fuat - Dede, Alp Eren. “Numerical Investigation of Flow Characteristics in Internally Flowing Pipes With Varying Roughness and Helical Angles of Vortex Generators”. International Journal of Automotive Science And Technology 8/3 (September 2024), 381-386. https://doi.org/10.30939/ijastech. 1509396.
JAMA Tan F, Dede AE. Numerical Investigation of Flow Characteristics in Internally Flowing Pipes with Varying Roughness and Helical Angles of Vortex Generators. IJASTECH. 2024;8:381–386.
MLA Tan, Fuat and Alp Eren Dede. “Numerical Investigation of Flow Characteristics in Internally Flowing Pipes With Varying Roughness and Helical Angles of Vortex Generators”. International Journal of Automotive Science And Technology, vol. 8, no. 3, 2024, pp. 381-6, doi:10.30939/ijastech. 1509396.
Vancouver Tan F, Dede AE. Numerical Investigation of Flow Characteristics in Internally Flowing Pipes with Varying Roughness and Helical Angles of Vortex Generators. IJASTECH. 2024;8(3):381-6.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png