Assessment of The Effect of Gamma Ray Treatments on Pollen Behavior in Cyclamen
Year 2022,
, 414 - 422, 15.12.2022
Mehmet Tütüncü
,
Yeşim Mendi
Abstract
The aim of the study is to evaluate the effects of gamma irradiation on pollen grains of Cyclamen persicum L. which is a valuable ornamental pot plant. Pollens were irradiated at different doses (0, 50, 100, 150, 200, 300, 450 Gy) of gamma-ray using Co-60 source and pollen viability and in vitro pollen germination test were carried out and tube length of in vitro germinated pollens was measured. Additionally, in vivo pollen development was visualized by performing an aniline blue fluorescence method. Average pollen viability was ranged from 82.02% to 87.03%. The highest pollen germination rate (66.13%) was observed in the control group at 24 h after irradition, while the lowest rate (28.51%) was determined in 450 Gy treatments at 72 h after irradition. The shortest pollen tube length (48.02 µm) was observed at 72 h old non-irradiated pollen grains, while the most extended pollen tube length (79.37 µm) was determined in pollen grains irradiated with 300 Gy at 24 HAI. When the irradiation dose increases from 150 Gy to 450 Gy, inhibition on pollen germination and pollen tube elongation within the style were observed.
Supporting Institution
TÜBİTAK
Thanks
This study supported by The Scientific and Technological Research Council of Turkey (TUBITAK; project number 118O728). We thank for the technical support during gamma irradiation to Dr. Yaprak Taner Kantoğlu (Turkish Energy, Nuclear and Mineral Research Agency) and Prof. Dr. Sinan Eti and Dr. Şenay Karabıyık for technical support during histological analysis.
References
- Sidhu, R. K. (2019). Pollen storage in vegetable crops: a review. Journal of Pharmacognosy and Phytochemistry, SP1, 599-603.
- Ali, H., Ghori, Z., Sheikh, S., & Gul, A. (2015). Effects of gamma radiation on crop production. In Crop production and global environmental issues (pp. 27-78). Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_2
- Cordea, M. I., & Tiriplică, A. (2019). Influence of Pollen Germination Capacity on a Successful Artificial Hybridization in Cyclamen sp. International Journal of Innovative Approaches in Agricultural Research, 3(1), 53. https://doi.org/10.29329/ijiaar.2019.188.5
- Curuk, P., Sogut, Z., Izgu, T., Sevindik, B., Tagipur, E. M., da Silva, J. A. T., Serçe, S., Solmaz, I., Aka Kaçar, Y., & Mendi, N. Y. Y. (2016). Morphological characterization of Cyclamen sp. grown naturally in Turkey: Part II. Acta Scientiarum Polonorum Hortorum Cultus, 15(5), 205-224.
- Grough, M. S. H., Sousaraei, N., Akbari, M., Rahimi, V., & Bayat, H. (2015). Induction of haploid plants in iris (Iris pseudacorus) by pollen irradiation. Turkish Journal of Agriculture and Forestry, 39(4), 596-600. https://doi.org/10.3906/tar-1407-18
- Karabıyık, Ș., Etİ, S., Yılmaz, B., & Sağır, F. S. (2017). Effects of pollination on fruit set and some fruit quality properties of Navel group Orange cultivars. alatarım, 16(1), 11-18.
- Kurtar, E. S. (2009). Influence of gamma irradiation on pollen viability, germination ability, and fruit and seed-set of pumpkin and winter squash. African Journal of Biotechnology, 8(24). https://doi.org/10.5897/AJB09.1336
- Kurtar, E. S., & Balkaya, A. (2010). Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell, Tissue and Organ Culture (PCTOC), 102(3), 267-277. https://doi.org/10.1007/s11240-010-9729-1
- Pandey, S., & Kumar, G. (2013). Hazardous effect of gamma-rays on in vitro pollen germination and pollen tube growth in Linum usitatissimum L. Chromosome Botany, 8(2), 31-34. https://doi.org/10.3199/iscb.8.31
- Schwartz-Tzachor, R., Eisikowitch, D., & Dafni, A. (2008). Flower characteristics and breeding system of two phenological ecotypes of Cyclamen persicum Mill.(Myrsinaceae) in Israel. Plant Systematics and Evolution, 274(1), 127-134. https://doi.org/10.1007/s00606-008-0027-x
- Sestili, S., & Ficcadenti, N. (1996). Irradiated pollen for haploid production. In In vitro haploid production in higher plants (pp. 263-274). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1860-8_15
- Simsek, O., Curuk, P., Aslan, F., Bayramoglu, M., Izgu, T., da Silva, J. A. T., Aka Kaçar, Y., & Mendi, Y. Y. (2017). Molecular characterization of Cyclamen species collected from different parts of Turkey by RAPD and SRAP markers. Biochemical genetics, 55(1), 87-102. https://doi.org/10.1007/s10528-016-9770-9
- Stephan, O. O. (2021). Implications of ionizing radiation on pollen performance in comparison with diverse models of polar cell growth. Plant, Cell & Environment, 44(3), 665-691. https://doi.org/10.1111/pce.13929
- Tütüncü, M., & Mendi, Y. Y. (2020). Evaluation of pollen tube growth and fertilization via histological analysis in Cyclamen persicum. Acta Horticulturae, 1283, 21-26. https://doi.org/10.17660/ActaHortic.2020.1283.4
- Wang, S. M., Lan, H., Jia, H. H., Xie, K. D., Wu, X. M., Chen, C. L., & Guo, W. W. (2016). Induction of parthenogenetic haploid plants using gamma irradiated pollens in ‘Hirado Buntan’pummelo (Citrus grandis [L.] Osbeck). Scientia horticulturae, 207, 233-239. https://doi.org/10.1016/j.scienta.2016.05.028
- Winkelmann, T., Rode, C., Bartsch, M., Prange, A., Heintz, D., Van Dorsselaer, A., & Braun, H. P. (2011). Towards a better understanding of somatic embryogenesis in Cyclamen persicum. Acta Horticulturae, 923, 15-23. https://doi.org/10.17660/ActaHortic.2011.923.1
- Yang, L., Liu, D., Hu, W., Chun, Y., Zhang, J., & Liu, Y. (2020). Fruit characteristics and seed anatomy of'Majia'pomelo pollinated with cobalt-60 gamma-ray-irradiated pollen. Scientia Horticulturae, 267, 109335. https://doi.org/10.1016/j.scienta.2020.109335
- Yiğit, D. (2014). Lazer ışınlarının sakı elma çeşidine ait polenlerdeki bazı fizyolojik özelliklere etkisi. Erzincan University Journal of Science and Technology, 1(1), 17-26. https://dergipark.org.tr/en/pub/erzifbed/issue/6016/80601
Siklamende Gama Işını Uygulamalarının Polen Davranışı Üzerine Etkisinin Değerlendirilmesi
Year 2022,
, 414 - 422, 15.12.2022
Mehmet Tütüncü
,
Yeşim Mendi
Abstract
Bu çalışmanın amacı önemli bir saksılı süs bitkisi olan Cyclamen persicum L.'nin polenleri üzerine gama ışınlamasının etkileri değerlendirilmiştir. Polenler Co-60 kaynağı kullanılarak farklı dozlarda (0, 50, 100, 150, 200, 300, 450 Gy) gama ışını ile ışınlanmış ve polen canlılığı, polen çimlenme oranı ve in vitro’da çimlenen polenlerin tüp uzunluğu ölçülmüştür. Ek olarak, anilin mavisi floresan yöntemi uygulanarak in vivo polen gelişimi gözlenmiştir. Ortalama polen canlılığı %82.02 ile %87.03 arasında değişmiştir. En yüksek polen çimlenme oranı ışınlamadan 24 saat sonra kontrol grubunda (%66.13), en düşük oran ise ışınlamadan 72 saat sonra 450 Gy uygulamada (%28.51) belirlenmiştir. En kısa polen tüpü uzunluğu (48.02 µm) 72 saatlik ışınlanmamış polenlerde gözlenirken, en uzun polen tüpü (79.37 µm) ışınlamadan 24 saat sonra 300 Gy ile ışınlanmış polenlerde belirlenmiştir. Işınlama dozu 150 Gy'den 450 Gy'ye yükseldiğinde, polen çimlenmesi üzerinde ve stil içerisinde polen tüp uzamasında durağanlık gözlemlenmiştir.
References
- Sidhu, R. K. (2019). Pollen storage in vegetable crops: a review. Journal of Pharmacognosy and Phytochemistry, SP1, 599-603.
- Ali, H., Ghori, Z., Sheikh, S., & Gul, A. (2015). Effects of gamma radiation on crop production. In Crop production and global environmental issues (pp. 27-78). Springer, Cham. https://doi.org/10.1007/978-3-319-23162-4_2
- Cordea, M. I., & Tiriplică, A. (2019). Influence of Pollen Germination Capacity on a Successful Artificial Hybridization in Cyclamen sp. International Journal of Innovative Approaches in Agricultural Research, 3(1), 53. https://doi.org/10.29329/ijiaar.2019.188.5
- Curuk, P., Sogut, Z., Izgu, T., Sevindik, B., Tagipur, E. M., da Silva, J. A. T., Serçe, S., Solmaz, I., Aka Kaçar, Y., & Mendi, N. Y. Y. (2016). Morphological characterization of Cyclamen sp. grown naturally in Turkey: Part II. Acta Scientiarum Polonorum Hortorum Cultus, 15(5), 205-224.
- Grough, M. S. H., Sousaraei, N., Akbari, M., Rahimi, V., & Bayat, H. (2015). Induction of haploid plants in iris (Iris pseudacorus) by pollen irradiation. Turkish Journal of Agriculture and Forestry, 39(4), 596-600. https://doi.org/10.3906/tar-1407-18
- Karabıyık, Ș., Etİ, S., Yılmaz, B., & Sağır, F. S. (2017). Effects of pollination on fruit set and some fruit quality properties of Navel group Orange cultivars. alatarım, 16(1), 11-18.
- Kurtar, E. S. (2009). Influence of gamma irradiation on pollen viability, germination ability, and fruit and seed-set of pumpkin and winter squash. African Journal of Biotechnology, 8(24). https://doi.org/10.5897/AJB09.1336
- Kurtar, E. S., & Balkaya, A. (2010). Production of in vitro haploid plants from in situ induced haploid embryos in winter squash (Cucurbita maxima Duchesne ex Lam.) via irradiated pollen. Plant Cell, Tissue and Organ Culture (PCTOC), 102(3), 267-277. https://doi.org/10.1007/s11240-010-9729-1
- Pandey, S., & Kumar, G. (2013). Hazardous effect of gamma-rays on in vitro pollen germination and pollen tube growth in Linum usitatissimum L. Chromosome Botany, 8(2), 31-34. https://doi.org/10.3199/iscb.8.31
- Schwartz-Tzachor, R., Eisikowitch, D., & Dafni, A. (2008). Flower characteristics and breeding system of two phenological ecotypes of Cyclamen persicum Mill.(Myrsinaceae) in Israel. Plant Systematics and Evolution, 274(1), 127-134. https://doi.org/10.1007/s00606-008-0027-x
- Sestili, S., & Ficcadenti, N. (1996). Irradiated pollen for haploid production. In In vitro haploid production in higher plants (pp. 263-274). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1860-8_15
- Simsek, O., Curuk, P., Aslan, F., Bayramoglu, M., Izgu, T., da Silva, J. A. T., Aka Kaçar, Y., & Mendi, Y. Y. (2017). Molecular characterization of Cyclamen species collected from different parts of Turkey by RAPD and SRAP markers. Biochemical genetics, 55(1), 87-102. https://doi.org/10.1007/s10528-016-9770-9
- Stephan, O. O. (2021). Implications of ionizing radiation on pollen performance in comparison with diverse models of polar cell growth. Plant, Cell & Environment, 44(3), 665-691. https://doi.org/10.1111/pce.13929
- Tütüncü, M., & Mendi, Y. Y. (2020). Evaluation of pollen tube growth and fertilization via histological analysis in Cyclamen persicum. Acta Horticulturae, 1283, 21-26. https://doi.org/10.17660/ActaHortic.2020.1283.4
- Wang, S. M., Lan, H., Jia, H. H., Xie, K. D., Wu, X. M., Chen, C. L., & Guo, W. W. (2016). Induction of parthenogenetic haploid plants using gamma irradiated pollens in ‘Hirado Buntan’pummelo (Citrus grandis [L.] Osbeck). Scientia horticulturae, 207, 233-239. https://doi.org/10.1016/j.scienta.2016.05.028
- Winkelmann, T., Rode, C., Bartsch, M., Prange, A., Heintz, D., Van Dorsselaer, A., & Braun, H. P. (2011). Towards a better understanding of somatic embryogenesis in Cyclamen persicum. Acta Horticulturae, 923, 15-23. https://doi.org/10.17660/ActaHortic.2011.923.1
- Yang, L., Liu, D., Hu, W., Chun, Y., Zhang, J., & Liu, Y. (2020). Fruit characteristics and seed anatomy of'Majia'pomelo pollinated with cobalt-60 gamma-ray-irradiated pollen. Scientia Horticulturae, 267, 109335. https://doi.org/10.1016/j.scienta.2020.109335
- Yiğit, D. (2014). Lazer ışınlarının sakı elma çeşidine ait polenlerdeki bazı fizyolojik özelliklere etkisi. Erzincan University Journal of Science and Technology, 1(1), 17-26. https://dergipark.org.tr/en/pub/erzifbed/issue/6016/80601