Review
BibTex RIS Cite

Baklagillerde Kök, Nodül Oluşumu ve Azot Fiksasyonu Üzerine Bazı Küresel İklim Değişikliği Parametrelerinin Etkisi

Year 2018, , 270 - 278, 30.12.2018
https://doi.org/10.24180/ijaws.366386

Abstract

Küresel iklim değişikliği sürecinde atmosferdeki
karbondioksit ve sıcaklıktaki artışın kuraklık ve tuzluluğu artıracağı bir
gerçektir. Bu değişikliklerin özellikle kurak ve yarı-kurak iklimlerde
yetiştirilen baklagilleri olumsuz yönde etkileyeceği bildirilmiştir. Bu
derlemede özellikle bu olumsuzlukların kök-nodül oluşumu ve biyolojik azot
özümlemesi (BNF) üzerine olan etkileri tartışılmıştır. Baklagiller ve
bakteriler arasındaki simbiyotik ilişki artan CO2 koşulları ile
birlikte artışı nodül gelişimini hızlandırmış ve BNF artışı görülmüştür. Buna
karşın iklim senaryolarına göre 2-4 0C sıcaklık artışı ve
beraberinde kuraklığın kök tüyü infeksiyonunu, nodül sayısını, nodül
büyüklüğünü, nodül gelişimini ve aktivitesini azaltarak BNF’yi olumsuz
etkilediği saptanmıştır. Öte yandan tuzluluğun nodül solunumunu ve
leghemoglobin içeriğini azalttığı vurgulanmıştır. 

References

  • Aranjueloa I., Arrese-Igorb C and Moleroc G., 2014. Nodule performance within a changing environmental context. Journal of Plant Physiology, 171: 1076-1090.
  • Ashraf M and Bashir A., 2003. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 198: 486-98.
  • Ashraf M and Iram A., 2005. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200: 535-546.
  • Bhandari K., Dev Sharma K., Hanumantha Rao B., Siddique KHM., Gaur P., Agrawal SK., Nair RM and Nayyar H., 2017. Temperature sensitivity of food legumes: a physiological insight. Acta Physiologiae Plantarum, 39: 68.
  • Bolaños L., Martín M, El-Hamdaoui A., Rivilla R and Bonilla I., 2006. Nitrogenase inhibition in nodules from pea plants grown under salt stress occurs at the physiological level and can be alleviated by B and Ca. Plant and Soil, 280: 135-142.
  • Bruning B., van Logtestijn R., Broekman R., de Vos A., Gonza´lez AP and Rozema J., 2015. Growth and nitrogen fixation of legumes at increased salinity under field conditions: Implications for the use of green manures in saline environments. AoB Plants, 7: 1-8.
  • Cernusak LA., Winter K., Martinez C., Correa E., Aranda J., Garcia M., Jaramillo C and Turner BL., 2011. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiology, 157: 372-385.
  • Cordovilla MP., Ligero F and Lluch C., 1995. Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in faba bean (Vicia faba L.) under salt stress. Plant and Soil, 172: 289-297.
  • Dart PJ, Islam R, Eaglesham A., 1975. The root nodule symbiosis of chickpea and pigeonpea. In Proceedings, International Workshop in Grain Legumes, 13-16 Jan, ICRISAT, Patancheru, India, pp. 63-83.
  • De Silva M., Purcell LC and King CA., 1996. Soybean petiole ureide response to water deficits and decreased transpiration. Crop Science, 36: 611-616.
  • El-Sheikh EAE and Wood M., 1995. Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology and Biochemistry, 27: 657-661.
  • Farooq M., Gogoi N., Barthakur S., Baroowa B., Bharadwaj N., Alghamdi SS and Siddique KHM., 2016. Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203: 81-102.
  • Feller U., 2016. Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. Journal of Plant Physiology, 203: 84-94.
  • Finn GA and Brun WA., 1982. Effects of atmospheric CO2 enrichment on growth, nonstructural carbohydrate content and root nodule activity in soybean. Plant Physiology, 69: 327-331.
  • Garg N and Singla R., 2004. Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Brazilian Journal of Plant Physiology, 16(3): 137-146.
  • Gaur PM., Samineni S., Krishnamurthy L., Kumar S., Ghanem ME and Beebe S., 2015. High temperature tolerance in grain legumes. Legume Perspect, 7: 6-7.
  • Graham PH and Vance CP., 2003. Legumes: importance and constraints to greater use. Plant Physiology, 131: 872-877.
  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V and Kandeler E., 2007. Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biology and Biochemistry, 39: 2208-2221.
  • Hanumantha Rao B, Nair RM and Nayyar H., 2016. Salinity and High Temperature Tolerance in Mungbean (Vigna radiata (L.) Wilczek) from a Physiological Perspective. Frontiers in Plant Science, 7: 957.
  • Hikosaka K., Kinugasa T., Oikawa S., Onoda Y and Hirose T., 2011. Effects of elevated CO2 concentration on seed production in C3 annual plants. Journal of Experimental Botany, 62: 1523-1530.
  • Huang J and Redman RE., 1995. Solute to salinity and calcium supply in cultivated and wild barley. Journal of Plant Nutrition, 18: 1371-1389.
  • Hungria M., Franco AA and Sprent JJ., 1993. New sources of high temperature tolerant rhizobia for Phaseolus vulgaris L. Plant and Soil, 149: 103-109.
  • IPCC 2013. Summary for Policymakers Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Stocker D., Qin GK., Plattner MMB., Tignor SK., Allen J., Boschung A., Nauels Y., Xia VB and Midgley PM). Cambridge University Press. pp. 5-9.
  • Kunert KJ., Vorster BJ., Fenta BA., Kibido T., Dionisio G and Foyer CH., 2016. Drought stress responses in soybean roots and nodules. Frontiers Plant Science, 7: 17.
  • Manchanda G and Garg N., 2008. Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30: 595-618.
  • Minchin FR., Summerfield RJ., Hadley P and Roberts EH., 1980. Growth, longevity and nodulation of roots in relation to seed yield in chickpea (Cicer arietinum L.). Experimental Agriculture, 16: 241-261.
  • Niste M., Vidican R., Rotar I., Stoian VR and Pop Miclea R., 2014. Plant nutrition affected by soil salinity and response of rhizobium regarding the nutrients accumulation. Journal of ProEnvironment, 7: 71-75.
  • Ortega JL, Sanchez F, Soberon M and Flores ML., 1992. Regulation of nodule glutamine-synthetase by CO2 levels in bean (Phaseolus vulgaris L.). Plant Physiology, 98: 584-587.
  • Phillips DA, Newell KD, Hassell SA and Felling CE., 1976. The effect of CO2 enrichment on root nodule development and symbiotic N2 reduction in Pisum sativum L. American Journal of Botany, 63: 356-362.
  • Popelka JC., Terryn N and Higgins TJV., 2004. Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Science, 167: 195-206.
  • Prasad PVV, Craufurd PQ and Summerfield RJ., 2000. Effect of high air and soil temperature on dry matter production, pod yield and yield components of groundnut. Plant and Soil, 222: 231-239.
  • Prasad PVV, Craufurd PQ, Kakani VG, Wheeler TR and Boote KJ., 2001. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Australian Journal of Plant Physiology, 28: 233-240.
  • Prasad PVV., Allen Jr., LH and Boote KJ., 2005. Crop Responses to elevated carbon dioxide and interaction with temperature: Grain legumes. Journal of Crop Improvement, 13(1/2): 113-155.
  • Rawsthorne S., Hadley P., Roberts EH and Summerfield RJ., 1985. Effects of supplemental nitrate and thermal regime on the nitrogen nutrition of chickpea (Cicer arietinum L.) II: Symbiotic development and nitrogen assimilation. Plant and Soil, 83: 279-293.
  • Reddy KR., Hodges HF and McKinion JM., 1997. Crop modeling and applications: a cotton example. Advances in Agronomy, 59: 225-290.
  • Rogers A, Ainsworth EA and Leakey AD., 2009. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 151: 1009-1016.
  • Rupela OP and Saxena MC., 1987. Nodulation and nitrogen fixation. The Chickpea (Eds. Saxena MC and Singh KB). CAB International, pp. 191-206.

Impact of Some Climate Change Parameters on Root, Nodule Formation and Nitrogen Fixation in Legumes

Year 2018, , 270 - 278, 30.12.2018
https://doi.org/10.24180/ijaws.366386

Abstract

In the
context of global climate change, the increase in carbon dioxide and
temperature in the atmosphere is a fact that will increase drought and
salinity. These changes have been reported to adversely affect legumes grown
especially in arid and semi-arid climates. In this review, the effects of these
adverse events on root-nodule formation and biological nitrogen fixation (BNF)
are discussed. The symbiotic relationship between legumes and bacteria, together
with increased CO2 conditions, accelerated nodule development and
increased BNF. However, according to climate scenarios, temperature increases
of 2-4 ° C with accompanying drought, decreased root hair infection, nodule
number, nodule size, nodule growth and activity and BNF was found to be
adversely affected. On the other hand, it was emphasized that salinity reduced
nodule respiration and leghemoglobin content.

References

  • Aranjueloa I., Arrese-Igorb C and Moleroc G., 2014. Nodule performance within a changing environmental context. Journal of Plant Physiology, 171: 1076-1090.
  • Ashraf M and Bashir A., 2003. Salt stress induced changes in some organic metabolites and ionic relations in nodules and other plant parts of two crop legumes differing in salt tolerance. Flora, 198: 486-98.
  • Ashraf M and Iram A., 2005. Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200: 535-546.
  • Bhandari K., Dev Sharma K., Hanumantha Rao B., Siddique KHM., Gaur P., Agrawal SK., Nair RM and Nayyar H., 2017. Temperature sensitivity of food legumes: a physiological insight. Acta Physiologiae Plantarum, 39: 68.
  • Bolaños L., Martín M, El-Hamdaoui A., Rivilla R and Bonilla I., 2006. Nitrogenase inhibition in nodules from pea plants grown under salt stress occurs at the physiological level and can be alleviated by B and Ca. Plant and Soil, 280: 135-142.
  • Bruning B., van Logtestijn R., Broekman R., de Vos A., Gonza´lez AP and Rozema J., 2015. Growth and nitrogen fixation of legumes at increased salinity under field conditions: Implications for the use of green manures in saline environments. AoB Plants, 7: 1-8.
  • Cernusak LA., Winter K., Martinez C., Correa E., Aranda J., Garcia M., Jaramillo C and Turner BL., 2011. Responses of legume versus nonlegume tropical tree seedlings to elevated CO2 concentration. Plant Physiology, 157: 372-385.
  • Cordovilla MP., Ligero F and Lluch C., 1995. Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in faba bean (Vicia faba L.) under salt stress. Plant and Soil, 172: 289-297.
  • Dart PJ, Islam R, Eaglesham A., 1975. The root nodule symbiosis of chickpea and pigeonpea. In Proceedings, International Workshop in Grain Legumes, 13-16 Jan, ICRISAT, Patancheru, India, pp. 63-83.
  • De Silva M., Purcell LC and King CA., 1996. Soybean petiole ureide response to water deficits and decreased transpiration. Crop Science, 36: 611-616.
  • El-Sheikh EAE and Wood M., 1995. Nodulation and N2 fixation by soybean inoculated with salt-tolerant rhizobia or salt-sensitive bradyrhizobia in saline soil. Soil Biology and Biochemistry, 27: 657-661.
  • Farooq M., Gogoi N., Barthakur S., Baroowa B., Bharadwaj N., Alghamdi SS and Siddique KHM., 2016. Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203: 81-102.
  • Feller U., 2016. Drought stress and carbon assimilation in a warming climate: reversible and irreversible impacts. Journal of Plant Physiology, 203: 84-94.
  • Finn GA and Brun WA., 1982. Effects of atmospheric CO2 enrichment on growth, nonstructural carbohydrate content and root nodule activity in soybean. Plant Physiology, 69: 327-331.
  • Garg N and Singla R., 2004. Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Brazilian Journal of Plant Physiology, 16(3): 137-146.
  • Gaur PM., Samineni S., Krishnamurthy L., Kumar S., Ghanem ME and Beebe S., 2015. High temperature tolerance in grain legumes. Legume Perspect, 7: 6-7.
  • Graham PH and Vance CP., 2003. Legumes: importance and constraints to greater use. Plant Physiology, 131: 872-877.
  • Haase S, Neumann G, Kania A, Kuzyakov Y, Römheld V and Kandeler E., 2007. Elevation of atmospheric CO2 and N-nutritional status modify nodulation, nodule-carbon supply, and root exudation of Phaseolus vulgaris L. Soil Biology and Biochemistry, 39: 2208-2221.
  • Hanumantha Rao B, Nair RM and Nayyar H., 2016. Salinity and High Temperature Tolerance in Mungbean (Vigna radiata (L.) Wilczek) from a Physiological Perspective. Frontiers in Plant Science, 7: 957.
  • Hikosaka K., Kinugasa T., Oikawa S., Onoda Y and Hirose T., 2011. Effects of elevated CO2 concentration on seed production in C3 annual plants. Journal of Experimental Botany, 62: 1523-1530.
  • Huang J and Redman RE., 1995. Solute to salinity and calcium supply in cultivated and wild barley. Journal of Plant Nutrition, 18: 1371-1389.
  • Hungria M., Franco AA and Sprent JJ., 1993. New sources of high temperature tolerant rhizobia for Phaseolus vulgaris L. Plant and Soil, 149: 103-109.
  • IPCC 2013. Summary for Policymakers Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Eds. Stocker D., Qin GK., Plattner MMB., Tignor SK., Allen J., Boschung A., Nauels Y., Xia VB and Midgley PM). Cambridge University Press. pp. 5-9.
  • Kunert KJ., Vorster BJ., Fenta BA., Kibido T., Dionisio G and Foyer CH., 2016. Drought stress responses in soybean roots and nodules. Frontiers Plant Science, 7: 17.
  • Manchanda G and Garg N., 2008. Salinity and its effects on the functional biology of legumes. Acta Physiologiae Plantarum, 30: 595-618.
  • Minchin FR., Summerfield RJ., Hadley P and Roberts EH., 1980. Growth, longevity and nodulation of roots in relation to seed yield in chickpea (Cicer arietinum L.). Experimental Agriculture, 16: 241-261.
  • Niste M., Vidican R., Rotar I., Stoian VR and Pop Miclea R., 2014. Plant nutrition affected by soil salinity and response of rhizobium regarding the nutrients accumulation. Journal of ProEnvironment, 7: 71-75.
  • Ortega JL, Sanchez F, Soberon M and Flores ML., 1992. Regulation of nodule glutamine-synthetase by CO2 levels in bean (Phaseolus vulgaris L.). Plant Physiology, 98: 584-587.
  • Phillips DA, Newell KD, Hassell SA and Felling CE., 1976. The effect of CO2 enrichment on root nodule development and symbiotic N2 reduction in Pisum sativum L. American Journal of Botany, 63: 356-362.
  • Popelka JC., Terryn N and Higgins TJV., 2004. Gene technology for grain legumes: can it contribute to the food challenge in developing countries? Plant Science, 167: 195-206.
  • Prasad PVV, Craufurd PQ and Summerfield RJ., 2000. Effect of high air and soil temperature on dry matter production, pod yield and yield components of groundnut. Plant and Soil, 222: 231-239.
  • Prasad PVV, Craufurd PQ, Kakani VG, Wheeler TR and Boote KJ., 2001. Influence of high temperature during pre- and post-anthesis stages of floral development on fruit-set and pollen germination in peanut. Australian Journal of Plant Physiology, 28: 233-240.
  • Prasad PVV., Allen Jr., LH and Boote KJ., 2005. Crop Responses to elevated carbon dioxide and interaction with temperature: Grain legumes. Journal of Crop Improvement, 13(1/2): 113-155.
  • Rawsthorne S., Hadley P., Roberts EH and Summerfield RJ., 1985. Effects of supplemental nitrate and thermal regime on the nitrogen nutrition of chickpea (Cicer arietinum L.) II: Symbiotic development and nitrogen assimilation. Plant and Soil, 83: 279-293.
  • Reddy KR., Hodges HF and McKinion JM., 1997. Crop modeling and applications: a cotton example. Advances in Agronomy, 59: 225-290.
  • Rogers A, Ainsworth EA and Leakey AD., 2009. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 151: 1009-1016.
  • Rupela OP and Saxena MC., 1987. Nodulation and nitrogen fixation. The Chickpea (Eds. Saxena MC and Singh KB). CAB International, pp. 191-206.
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

İlkay Yavaş 0000-0002-6863-9631

Aydın Ünay 0000-0002-7278-4428

Publication Date December 30, 2018
Submission Date December 15, 2017
Acceptance Date March 9, 2018
Published in Issue Year 2018

Cite

APA Yavaş, İ., & Ünay, A. (2018). Baklagillerde Kök, Nodül Oluşumu ve Azot Fiksasyonu Üzerine Bazı Küresel İklim Değişikliği Parametrelerinin Etkisi. International Journal of Agricultural and Wildlife Sciences, 4(2), 270-278. https://doi.org/10.24180/ijaws.366386

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a