Research Article
BibTex RIS Cite

Determination of the Effects of Ultraviolet-C and Ultrasound Applications on Seedling Growth in Tomato and Cucumber

Year 2020, , 423 - 434, 21.12.2020
https://doi.org/10.24180/ijaws.814388

Abstract

Nowadays, intensive researches are carried out on environment friendly alternative physical methods to promote plant growth. This study was conducted to determine the effects of ultraviolet-C and ultrasound applications, which are among physical methods, on seedling growth in tomato and cucumber, which are the most cultivated summer vegetables in the world and in our country. In the study where Falcon and H-2274 tomato varieties and Prima and Beith Alpha cucumber varieties were used as herbal material, 1) Control, 2) Ultraviolet-C (UV-C), 3) Ultrasound (US) and 4) UV-C+US applications were evaluated. In the study, seedling height, stem diameter, root length, seedling fresh and dry weight, number of leaves and chlorophyll content were determined. As a result of the research, it was determined that UV-C, US and UV-C+US applications had positive effects on the seedling growth parameters compared to the control. It was detected that UV-C+US application was more effective on seedling growth in all 4 varieties discussed in the research. When compared to the control application, UV-C+US application increased seedling height, seedling fresh weight and seedling dry weight by 16.99-45.11%, 24.82-39.88% and 37.93-52.63%, respectively, depending on the varieties. As a result, it was determined that UV-C, US and UV-C+US applications can be used as an alternative application method to increase seedling growth in tomato and cucumber.

References

  • Aladjadjiyan, A. (2002). Increasing carrot seeds (Daucus carota L.), cv. Nantes, viability through ultrasound treatment. Bulgarian Journal of Agricultural Science, 8, 469-472.
  • Aladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture, 3, 369-380.
  • Aladjadjiyan, A. (2012). Physical factors for plant growth stimulation improve food quality. In: Aladjadjiyan A (ed) Food Production: Approaches, Challenges and Tasks. IntechOpen, 145-168.
  • Amini, F., & Ehsanpour, A. A. (2005). Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology, 1(4), 212-216.
  • Awad, T., Moharram, H., Shaltout, O., Asker, D., & Youssef, M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427.
  • Babu, B. S., & Swamy, P. M. (2012). Effect of ultra sound on physiological parameters in cultivars of Vigna radiata. Asian Journal of Plant Science and Research, 2(2), 163-172.
  • Chen, Y. P., Liu, Q., Yue, X. Z., Meng, Z. W., & Liang, J. (2013). Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling. Environmental Science and Pollution Research, 20(7), 4807-4816.
  • Choudhary, K. K., & Agrawal, S. B. (2014). Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.). Ecotoxicology and Environmental Safety, 100, 178-187.
  • Ciu, K. Y., & Sung, J. M. (2014). Use of ultrasonication to enhance pea seed germination and microbial quality of pea sprouts. International Journal of Food Science and Technology, 49, 1699-1706.
  • De Micco, V., Paradiso, R., Aronne, G., De Pascale, S., Quarto, M., & Arena, C. (2014). Leaf anatomoy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. The Scientific World Journal, 2014, 1-14.
  • Dhanya Thomas, T. T., & Puthur, J. T. (2017). UV radiation priming: A means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environmental and Experimental Botany, 138, 57-66. Dhiman, M. R., & Prakash, C. (2005). Correlation and path coefficient analysis in cucumber. Haryana Journal of Horticultural Sciences, 34(1-2), 111-112.
  • El-Shora, H. M., El-Farrash, A. H., Kamal, H., & Abdelrazek, A. (2015). Enhancement of antioxidant defense system by UV radiation in fenugreek as medical plant. International Journal of Science and Research, 3, 529-535.
  • FAOSTAT. (2018). Statistical databases. Food and Agriculture Organization of the United Nations. http://faostat.fao.org. Erişim tarihi: 15 Eylül 2020.
  • Fotouh, A. M. M., Moawad, F. G., El-Naggar, H. A., El-Din, M. T., & Eldeen, H. S. (2014). Influence of seed treatment with UV-C on saline stress tolerance in green beans (Phaseolus vulgaris L.). Journal of Biological Chemistry and Environmental Sciences, 9(2), 391-414.
  • Frederick, J. E. (1993). Ultraviolet sunlight reaching the earth's surface: A review of recent research. Photochemistry and Photobiology, 57(1), 175-178.
  • Goussous, S. J., Samarah, N. H., Alqudah, A. M., & Othman, M. O. (2010). Enhancing seed germination of four crops species using an ultrasonic technique. Experimental Agriculture 46, 231-242.
  • Hamid, N., & Jawaid, F. (2011). Influence of seed pre-treatment by UV-A and UV-C radiation on germination and growth of Mung beans. Pakistan Journal of Chemistry, 1, 164-167.
  • Hollosy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33(2), 179-197.
  • Jayakumar, M., Amudha, P., & Kulandaivelu, G. (2003). Changes in growth and yield of Phaseolus mungo L. induced by UV-A and UV-B enhanced radiation. Journal of Plant Biology, 46(1), 59-61.
  • Kacharava, N., Chanishvili, S., Badridze, G., Chkhubianishvili, E., & Janukashvili, N. (2009). Effect of seed irradiation on the content of antioxidants in leaves of kidney bean, cabbage and beet cultivars. Australian Journal of Crop Science, 3(3), 137-145.
  • Kang, S., Zhang, Y., Zhang, Y., Zou, J., Yang, Q., & Li, T. (2018). Ultraviolet-A radiation stimulates growth of indoor cultivated tomato (Solanum lycopersicum) seedlings. HortScience, 53(10), 1429-1433.
  • Kara, Y. (2013). Morphological and physiological effects of UV-C radiation on bean plant (Phaseolus vulgaris). Bioscience Research, 10(1), 29-32.
  • Katerova, Z. I., & Todorova, D. (2009). Endogenous polyamines lessen membrane damages in pea plants provoked by enhanced ultraviolet-C radiation. Plant Growth Regulation, 57, 145-152.
  • Kim, H. J., Feng, H., Kushad, M. M., & Fan, X. (2006). Effects of ultrasound, irradiation, and acidic electrolyzed water on germination of alfalfa and broccoli seeds and Escherichia coli O157: H7. Journal of Food Science, 71(6), 168-173.
  • Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138-155.
  • Kovacs, E., & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210. Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59-64.
  • Liu, B., Liu, X. B., Li, Y. S., & Herbert, S. J. (2013). Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research, 154, 158-163.
  • Mahdavian, K., Ghorbanli, M., & Kalantari, K. M. (2008). The effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turkish Journal of Botany, 32(1), 25-33.
  • Mariz-Ponte, N., Mendes, R. J., Sario, S., Melo, P., & Santos, C. (2018). Moderate UV-A supplementation benefits tomato seed and seedling invigoration: A contribution to the use of UV in seed technology. Scientia Horticulturae, 235, 357-366.
  • Miano, C. A., Costa Pereira, J., Castanha, N., Matta Junior, M. D., & Augusto, E. D. (2016). Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components. Scientific Reports, 6, 1-14.
  • Noble, R. E. (2002). Effects of UV-irradiation on seed germination. Science of the Total Environment, 299(1-3), 173-176.
  • Ouhibi, C., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Aarrouf, J., Urban, L., & Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126-133.
  • Ramteke, A. A., Meshram, U. P., & Yaul, A. R. (2015). Effect of ultrasonic waves on seed germination of Lycopersicon esculentum and Anethum graveolens. International Journal of Chemical and Physical Sciences, 4, 333-336.
  • Rifna, E. J., Ramanan, K. R., & Mahendran, R. (2019). Emerging technology applications for improving seed germination. Trends in Food Science & Technology, 86, 95-108.
  • Sarı, M. E. (2019). Ultraviyole (UV), manyetik alan (MA) ve hidropriming (HP) uygulamalarının biber, lahana, marul ve soğan tohumlarında kalitenin iyileştirilmesinde kullanımı. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Sharma, B. D., & Hore, D. K. (1996). Indian cucumber germplasm and challenges ahead. Genetic Resources and Crop Evolution, 43, 7-12.
  • Shetta, D. N., & Areaf, M. I. (2009). Impact of ultraviolet-C radiation on seed germination and chlorophyll concentration of some woody trees grown in Saudi Arabia. Journal of Agriculture and Environmental Sciences, 8, 1-21.
  • Siddiqui, A., Dawar, S., Zaki, M. J., & Hamid, N. (2011). Role of ultra violet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. Pakistan Journal of Botany, 43(4), 2221-2224.
  • Stratu, A., Peptanariu, M., Sarghi, V., & Costica, N. (2010). Aspects regarding the behaviour of the Capsicum annuum L. species to the ultrasound treatment. Lucrari Stiintifice, 53(1), 69-72.
  • TÜİK. (2020). Bitkisel üretim istatistikleri. http://www.tuik.gov.tr. Erişim tarihi: 10 Eylül 2020.
  • Tüzel, Y., Gül, A., Öztekin, G. B., Engindeniz, S., Boyacı, F., Duyar, H., Cebeci, & E., Durdu, T. (2020). Türkiye’de örtüaltı yetiştiriciliği ve yeni gelişmeler. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, Ankara.
  • Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology, 29,179-186.
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür Sebzeleri (Sebze Yetiştirme). Ege Üniversitesi Basımevi, İzmir. Wang, Q., Chen, G., Yersaiyiti, H., Liu, Y., Cui, J., Wu, C., Zhang, Y., & He, X. (2012). Modeling analysis on germination and seedling growth using ultrasound seed pretreatment in switchgrass. Plos One, 7(10), 1-10.
  • Yaldagard, M., Mortazavi, S. A., & Tabatabaie, F. (2008). Application of ultrasonic waves as a priming technique for accelerating and enhancing the germination of barley seed: Optimization of method by the Taguchi approach. Journal of Institute of Brewing, 114(1), 14-21.
  • Yang, H. B., Ding, W. M., Chen, K. J., & Ding, Y. Q. (2004). Application of ultrasonic technique in agriculture-actuality and prospect. Journal of Agricultural Mechanization Research, 1, 365-370.
  • Yang, H., Gao, J., Yang, A., & Chen, H. (2015). The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Research International, 77, 704-710.
  • Yinan, Y., Yuan, L., Yongqing, Y., & Chunyang, L. (2005). Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environmental and Experimental Botany, 54, 286-294.
  • Zhang, L., Allen, L. H., Vaughan, M. M., Hauser, B. A., & Boote, K. J. (2014). Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height. Agricultural and Forest Meteorology, 184, 170-178.

Ultraviyole-C ve Ultrason Uygulamalarının Domates ve Hıyarda Fide Gelişimi Üzerine Etkilerinin Belirlenmesi

Year 2020, , 423 - 434, 21.12.2020
https://doi.org/10.24180/ijaws.814388

Abstract

Günümüzde bitki büyümesini teşvik etmek amacıyla çevre dostu alternatif fiziksel yöntemlere yönelik yoğun araştırmalar yapılmaktadır. Bu çalışma, fiziksel yöntemler arasında yer alan ultraviyole-C ve ultrason uygulamalarının dünyada ve ülkemizde en fazla yetiştiriciliği yapılan yazlık sebze türlerinden domates ve hıyarda fide gelişimi üzerine etkilerini belirlemek amacıyla yapılmıştır. Bitkisel materyal olarak Falcon ve H-2274 domates çeşitleri ile Prima ve Beith Alpha hıyar çeşitlerinin kullanıldığı çalışmada 1) Kontrol, 2) Ultraviyole-C (UV-C), 3) Ultrason (US) ve 4) UV-C+US uygulamaları ele alınmıştır. Çalışmada fide boyu, gövde çapı, kök uzunluğu, fide yaş ve kuru ağırlığı, yaprak sayısı ve klorofil miktarı belirlenmiştir. Araştırma sonucunda UV-C, US ve UV-C+US uygulamalarının kontrole göre fide büyüme parametreleri üzerine olumlu etkilerinin olduğu belirlenmiştir. UV-C+US uygulamasının araştırmada ele alınan 4 çeşitte de fide gelişimi üzerine daha etkili olduğu ve kontrol uygulaması ile karşılaştırıldığında, çeşitlere bağlı olarak fide boyu, fide yaş ağırlığı ve fide kuru ağırlığını sırasıyla %16.99-45.11, %24.82-39.88 ve %37.93-52.63 oranında artırdığı belirlenmiştir. Sonuç olarak, UV-C ve US uygulamaları ile her ikisinin kombinasyonunun domates ve hıyarda fide gelişimini artırmada alternatif bir uygulama yöntemi olarak kullanılabileceği tespit edilmiştir.

References

  • Aladjadjiyan, A. (2002). Increasing carrot seeds (Daucus carota L.), cv. Nantes, viability through ultrasound treatment. Bulgarian Journal of Agricultural Science, 8, 469-472.
  • Aladjadjiyan, A. (2007). The use of physical methods for plant growing stimulation in Bulgaria. Journal of Central European Agriculture, 3, 369-380.
  • Aladjadjiyan, A. (2012). Physical factors for plant growth stimulation improve food quality. In: Aladjadjiyan A (ed) Food Production: Approaches, Challenges and Tasks. IntechOpen, 145-168.
  • Amini, F., & Ehsanpour, A. A. (2005). Soluble proteins, proline, carbohydrates and Na+/K+ changes in two tomato (Lycopersicon esculentum Mill.) cultivars under in vitro salt stress. American Journal of Biochemistry and Biotechnology, 1(4), 212-216.
  • Awad, T., Moharram, H., Shaltout, O., Asker, D., & Youssef, M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410-427.
  • Babu, B. S., & Swamy, P. M. (2012). Effect of ultra sound on physiological parameters in cultivars of Vigna radiata. Asian Journal of Plant Science and Research, 2(2), 163-172.
  • Chen, Y. P., Liu, Q., Yue, X. Z., Meng, Z. W., & Liang, J. (2013). Ultrasonic vibration seeds showed improved resistance to cadmium and lead in wheat seedling. Environmental Science and Pollution Research, 20(7), 4807-4816.
  • Choudhary, K. K., & Agrawal, S. B. (2014). Ultraviolet-B induced changes in morphological, physiological and biochemical parameters of two cultivars of pea (Pisum sativum L.). Ecotoxicology and Environmental Safety, 100, 178-187.
  • Ciu, K. Y., & Sung, J. M. (2014). Use of ultrasonication to enhance pea seed germination and microbial quality of pea sprouts. International Journal of Food Science and Technology, 49, 1699-1706.
  • De Micco, V., Paradiso, R., Aronne, G., De Pascale, S., Quarto, M., & Arena, C. (2014). Leaf anatomoy and photochemical behaviour of Solanum lycopersicum L. plants from seeds irradiated with low-LET ionising radiation. The Scientific World Journal, 2014, 1-14.
  • Dhanya Thomas, T. T., & Puthur, J. T. (2017). UV radiation priming: A means of amplifying the inherent potential for abiotic stress tolerance in crop plants. Environmental and Experimental Botany, 138, 57-66. Dhiman, M. R., & Prakash, C. (2005). Correlation and path coefficient analysis in cucumber. Haryana Journal of Horticultural Sciences, 34(1-2), 111-112.
  • El-Shora, H. M., El-Farrash, A. H., Kamal, H., & Abdelrazek, A. (2015). Enhancement of antioxidant defense system by UV radiation in fenugreek as medical plant. International Journal of Science and Research, 3, 529-535.
  • FAOSTAT. (2018). Statistical databases. Food and Agriculture Organization of the United Nations. http://faostat.fao.org. Erişim tarihi: 15 Eylül 2020.
  • Fotouh, A. M. M., Moawad, F. G., El-Naggar, H. A., El-Din, M. T., & Eldeen, H. S. (2014). Influence of seed treatment with UV-C on saline stress tolerance in green beans (Phaseolus vulgaris L.). Journal of Biological Chemistry and Environmental Sciences, 9(2), 391-414.
  • Frederick, J. E. (1993). Ultraviolet sunlight reaching the earth's surface: A review of recent research. Photochemistry and Photobiology, 57(1), 175-178.
  • Goussous, S. J., Samarah, N. H., Alqudah, A. M., & Othman, M. O. (2010). Enhancing seed germination of four crops species using an ultrasonic technique. Experimental Agriculture 46, 231-242.
  • Hamid, N., & Jawaid, F. (2011). Influence of seed pre-treatment by UV-A and UV-C radiation on germination and growth of Mung beans. Pakistan Journal of Chemistry, 1, 164-167.
  • Hollosy, F. (2002). Effects of ultraviolet radiation on plant cells. Micron, 33(2), 179-197.
  • Jayakumar, M., Amudha, P., & Kulandaivelu, G. (2003). Changes in growth and yield of Phaseolus mungo L. induced by UV-A and UV-B enhanced radiation. Journal of Plant Biology, 46(1), 59-61.
  • Kacharava, N., Chanishvili, S., Badridze, G., Chkhubianishvili, E., & Janukashvili, N. (2009). Effect of seed irradiation on the content of antioxidants in leaves of kidney bean, cabbage and beet cultivars. Australian Journal of Crop Science, 3(3), 137-145.
  • Kang, S., Zhang, Y., Zhang, Y., Zou, J., Yang, Q., & Li, T. (2018). Ultraviolet-A radiation stimulates growth of indoor cultivated tomato (Solanum lycopersicum) seedlings. HortScience, 53(10), 1429-1433.
  • Kara, Y. (2013). Morphological and physiological effects of UV-C radiation on bean plant (Phaseolus vulgaris). Bioscience Research, 10(1), 29-32.
  • Katerova, Z. I., & Todorova, D. (2009). Endogenous polyamines lessen membrane damages in pea plants provoked by enhanced ultraviolet-C radiation. Plant Growth Regulation, 57, 145-152.
  • Kim, H. J., Feng, H., Kushad, M. M., & Fan, X. (2006). Effects of ultrasound, irradiation, and acidic electrolyzed water on germination of alfalfa and broccoli seeds and Escherichia coli O157: H7. Journal of Food Science, 71(6), 168-173.
  • Koutchma, T. (2009). Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology, 2(2), 138-155.
  • Kovacs, E., & Keresztes, A. (2002). Effect of gamma and UV-B/C radiation on plant cells. Micron, 33(2), 199-210. Li, Q., & Kubota, C. (2009). Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany, 67(1), 59-64.
  • Liu, B., Liu, X. B., Li, Y. S., & Herbert, S. J. (2013). Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research, 154, 158-163.
  • Mahdavian, K., Ghorbanli, M., & Kalantari, K. M. (2008). The effects of ultraviolet radiation on the contents of chlorophyll, flavonoid, anthocyanin and proline in Capsicum annuum L. Turkish Journal of Botany, 32(1), 25-33.
  • Mariz-Ponte, N., Mendes, R. J., Sario, S., Melo, P., & Santos, C. (2018). Moderate UV-A supplementation benefits tomato seed and seedling invigoration: A contribution to the use of UV in seed technology. Scientia Horticulturae, 235, 357-366.
  • Miano, C. A., Costa Pereira, J., Castanha, N., Matta Junior, M. D., & Augusto, E. D. (2016). Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components. Scientific Reports, 6, 1-14.
  • Noble, R. E. (2002). Effects of UV-irradiation on seed germination. Science of the Total Environment, 299(1-3), 173-176.
  • Ouhibi, C., Attia, H., Rebah, F., Msilini, N., Chebbi, M., Aarrouf, J., Urban, L., & Lachaal, M. (2014). Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126-133.
  • Ramteke, A. A., Meshram, U. P., & Yaul, A. R. (2015). Effect of ultrasonic waves on seed germination of Lycopersicon esculentum and Anethum graveolens. International Journal of Chemical and Physical Sciences, 4, 333-336.
  • Rifna, E. J., Ramanan, K. R., & Mahendran, R. (2019). Emerging technology applications for improving seed germination. Trends in Food Science & Technology, 86, 95-108.
  • Sarı, M. E. (2019). Ultraviyole (UV), manyetik alan (MA) ve hidropriming (HP) uygulamalarının biber, lahana, marul ve soğan tohumlarında kalitenin iyileştirilmesinde kullanımı. Doktora Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Ankara.
  • Sharma, B. D., & Hore, D. K. (1996). Indian cucumber germplasm and challenges ahead. Genetic Resources and Crop Evolution, 43, 7-12.
  • Shetta, D. N., & Areaf, M. I. (2009). Impact of ultraviolet-C radiation on seed germination and chlorophyll concentration of some woody trees grown in Saudi Arabia. Journal of Agriculture and Environmental Sciences, 8, 1-21.
  • Siddiqui, A., Dawar, S., Zaki, M. J., & Hamid, N. (2011). Role of ultra violet (UV-C) radiation in the control of root infecting fungi on groundnut and mung bean. Pakistan Journal of Botany, 43(4), 2221-2224.
  • Stratu, A., Peptanariu, M., Sarghi, V., & Costica, N. (2010). Aspects regarding the behaviour of the Capsicum annuum L. species to the ultrasound treatment. Lucrari Stiintifice, 53(1), 69-72.
  • TÜİK. (2020). Bitkisel üretim istatistikleri. http://www.tuik.gov.tr. Erişim tarihi: 10 Eylül 2020.
  • Tüzel, Y., Gül, A., Öztekin, G. B., Engindeniz, S., Boyacı, F., Duyar, H., Cebeci, & E., Durdu, T. (2020). Türkiye’de örtüaltı yetiştiriciliği ve yeni gelişmeler. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi, Ankara.
  • Vasilevski, G. (2003). Perspectives of the application of biophysical methods in sustainable agriculture. Bulgarian Journal of Plant Physiology, 29,179-186.
  • Vural, H., Eşiyok, D., & Duman, İ. (2000). Kültür Sebzeleri (Sebze Yetiştirme). Ege Üniversitesi Basımevi, İzmir. Wang, Q., Chen, G., Yersaiyiti, H., Liu, Y., Cui, J., Wu, C., Zhang, Y., & He, X. (2012). Modeling analysis on germination and seedling growth using ultrasound seed pretreatment in switchgrass. Plos One, 7(10), 1-10.
  • Yaldagard, M., Mortazavi, S. A., & Tabatabaie, F. (2008). Application of ultrasonic waves as a priming technique for accelerating and enhancing the germination of barley seed: Optimization of method by the Taguchi approach. Journal of Institute of Brewing, 114(1), 14-21.
  • Yang, H. B., Ding, W. M., Chen, K. J., & Ding, Y. Q. (2004). Application of ultrasonic technique in agriculture-actuality and prospect. Journal of Agricultural Mechanization Research, 1, 365-370.
  • Yang, H., Gao, J., Yang, A., & Chen, H. (2015). The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Research International, 77, 704-710.
  • Yinan, Y., Yuan, L., Yongqing, Y., & Chunyang, L. (2005). Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation. Environmental and Experimental Botany, 54, 286-294.
  • Zhang, L., Allen, L. H., Vaughan, M. M., Hauser, B. A., & Boote, K. J. (2014). Solar ultraviolet radiation exclusion increases soybean internode lengths and plant height. Agricultural and Forest Meteorology, 184, 170-178.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Horticultural Production
Journal Section Horticultural Sciences
Authors

Beyhan Kibar 0000-0001-9253-5747

Publication Date December 21, 2020
Submission Date October 21, 2020
Acceptance Date November 24, 2020
Published in Issue Year 2020

Cite

APA Kibar, B. (2020). Ultraviyole-C ve Ultrason Uygulamalarının Domates ve Hıyarda Fide Gelişimi Üzerine Etkilerinin Belirlenmesi. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 6(3), 423-434. https://doi.org/10.24180/ijaws.814388

17365   17368      17366     17369    17370              


88x31.png    Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi Creative Commons Attribution 4.0 Generic License a