The Effect of Plant Growth Promoting Rhizobacteria on Root Growth in Bread Wheat (Triticum aestivum L.)
Year 2021,
, 239 - 246, 25.08.2021
Harun Bektaş
,
Behçet İnal
,
Mehmet Sonkurt
Fatih Çığ
,
Yasemin Bektaş
Abstract
Bread wheat (Triticum aestivum L.) is the most produced cool-season cereal in the world and meets about 20% of our daily caloric intake. Climate change negatively affects grain yield, it is, therefore, necessary to improve climate-resilient wheat crops. It is a known fact that subsoil parameters are not mostly included in the breeding selection criteria due to some technical limitations. For this reason, it is essential to examine the root system, which has a fundamental role in drought tolerance, for morphological, anatomical, physiological, and architectural aspects, to understand the genetic mechanisms of these traits and to determine breeding strategies. In this study, the seeds of two different bread wheat varieties were inoculated by three different plant growth-promoting rhizobacteria (PGPR), which synthesize the ACC deaminase enzyme. When the results were evaluated, significant differences were observed between varieties and bacterial applications for the total root length and root growth angle. As a result of the study, it was observed that all three bacteria species had a positive effect on root development. Brevibacillus choshinensis was the most effective inoculation on total root length in Gerek 79 (95.4 cm), while it was Arthrobacter agilis in Bezostaja 1 (62.8 cm). We suggest that plant growth-promoting rhizobacteria have a positive effect on wheat root development and a detailed analysis of this effect should be carried out with future studies.
Supporting Institution
This study was supported by a scientific research project numbered SİÜZİR-64 of the Siirt University
Thanks
The authors are grateful to Dr. Sara Yasemin and Semih Acikbas for proofreading and inputs.
References
- Ali, S. Z., Sandhya, V., & Rao, L. V. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64, 493-502.
- Anderson, W. K. (2010). Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research, 116(1-2), 14-22.
- Ayrancı, R., Bayram, S., & Soylu, S. (2017). The Response on the Drought Stress Yield and Phenological Properties of Bread Wheat Genotypes in Grain Filling Stage. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 26,112-118.
- Bayram, S., Öztürk, A., & Aydın, M. (2015). Seedling survival as a criterion of resistance to early drought in bread wheat genotypes. Turkish Journal of Nature and Science, 4(2), 30-35.
- Bi̇çer, Ş., Erdi̇nç, Ç., & Çömlekçi̇oğlu, N. (2020). The effects of root bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on plant growth and yield properties at different irrigation levels in cucumber. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(1), 8-20.
- Carlos, M. H. J., Stefani, P. V. Y., Janette, A. M., Melani, M. S. S., & Gabriela, P. O. (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological Research, 188, 53-61.
- Contesto, C., Desbrosses, G., Lefoulon, C., Bena, G., Borel, F., Galland, M., Gamet, L., Varoquaux, F., & Touraine, B. (2008). Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science, 175, 178-189.
- Çekiç, C. Y. (2007) A study on physiological parameters which can be used as selection criteria in breeding wheat (Triticum aestivum L.) for drought resistance. Ankara University Graduate School of Natural and Applied Sciences, Soil Science and Plant Nutrition Program.
- Döös, B. R. (2002). Population growth and loss of arable land. Global Environmental Change, 12(4), 303-311.
Ehdaie, B., Layne, A. P., & Waines, J. G. (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 186(1), 219-232.
- FAOSTAT. (2019). Food, Agriculture Organization of the United, Nations. Available from, http://faostat.fao.org/default.aspx. Accessed date: May 04, 2021.
- Gouache, D., Bogard, M., Thepot, S., Pegard, M., Le Bris, X., & Deswarte, J. C. (2015). From ideotypes to genotypes: approaches to adapt wheat phenology to climate change. Procedia Environmental Sciences, 29, 34-35.
- Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329-339.
- Gontia-Mishra, I., Sasidharan, S., & Tiwari, S. (2014). Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnology Letters, 36, 889-898.
- Govindasamy, V., Senthilkumar, M., Gaikwad, K., & Annapurna, K. (2008). Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Current Microbiology, 57, 312-317.
- Govindasamy, V., Senthilkumar, M., Mageshwaran, V., & Annapurna, K. (2009). Detection and characterization of ACC deaminase in plant growth promoting rhizobacteria. Journal of Plant Biochemistry and Biotechnology 18, 71-76.
- Hawkesford, M. J., Araus, J. L., Park, R., Calderini, D., Miralles, D., Shen, T., & Parry, M. A. J. (2013). Prospects of doubling global wheat yields. Food and Energy Security, 2(1), 34-48.
- Hohn, C. E. (2016). Discovery and Verification of Quantitative Trait Loci (QTLs) for Seminal Root Traits and Insights Into Root to Shoot Tradeoffs in Hexaploid Wheat (Triticum aestivum L.). University of California Riverside. Riverside, CA, USA.
- Lindh, M., Zhang, L., Falster, D., Franklin, O., & Brännström, A. (2014). Plant diversity and drought: the role of deep roots. Ecological modelling, 290, 85-93.
- Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2), 347-357.
- Manschadi, A. M., Christopher, J., deVoil, P., & Hammer, G. L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33(9), 823-837.
- Passioura, J. B. (1983). Roots and drought resistance. Agricultural Water Management, 7(1-3), 265-280.
- Passioura, J. B. (2012). Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Functional Plant Biology, 39(10-11), 851-859.
- Reeves, T. G., Thomas, G., & Ramsay, G. (2016). Save and grow in practice: maize, rice, wheat-a guide to sustainable cereal production. UN Food and Agriculture Organization, Rome.
- Reynolds, M., Dreccer, F., & Trethowan, R. (2007). Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany, 58(2), 177-186.
- Richards, R. A., & Passioura, J. B. (1981). Seminal root morphology and water use of wheat II. Genetic Variation 1. Crop Science, 21(2), 253-255.
- Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529.
- Schwartz, A. R., Ortiz, I., Maymon, M., Herbold, C. W., Fujishige, N. A., Vijanderan, J. A., Villella, W., Hanamoto, K., Diener, A., Sanders, E. R., & DeMason, D. A. (2013). Bacillus simplex-a little known PGPB with anti-fungal activity-alters pea legume root architecture and nodule morphology when co-inoculated with Rhizobium leguminosarum bv. viciae. Agronomy, 3(4), 595-620.
- Shaharoona, B., Arshad, M., & Zahir, Z. A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied Microbiology, 42, 155-159.
- Shahzad, S. M., Khalid, A., Arshad, M., Khalid, M., & Mehboob, I. (2008). Integrated use of plant growth promoting bacteria and p-enriched compost for improving growth, yield and nodulation of chickpea. Pakistan Journal of Botany, 40, 1735-1741.
- Sharma, S., Kulkarni, J., & Jha, B. (2016). Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology, 7, 11.
- Trnka, M., Hlavinka, P., & Semenov, M. A. (2015). Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. Journal of the Royal Society Interface, 12(112).
Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8), 2485-2494.
- Weaver, J. E. (1926). Root development of field crops. McGRAW-Hill Book Company, INC. New York.
- Wintermans, P. C. A., Bakker, P., & Pieterse, C. M. J. (2016). Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 90(6), 623-634.
- Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415-421.
Bitki Gelişimini Teşvik Edici Rizobakterilerin Ekmeklik Buğdayda (Triticum aestivum L.) Kök Gelişimine Etkisi
Year 2021,
, 239 - 246, 25.08.2021
Harun Bektaş
,
Behçet İnal
,
Mehmet Sonkurt
Fatih Çığ
,
Yasemin Bektaş
Abstract
Ekmeklik buğday (Triticum aestivum), dünya üzerinde en fazla üretimi yapılan ve günlük kalori ihtiyacımızın yaklaşık %20’sini karşılayan bir serin iklim tahılıdır. İklim değişimi buğdayın verim değerlerini negatif yönde etkilemektedir. Islah çalışmalarında toprak altı parametrelerinin bazı teknik zorluklar nedeniyle çoğunlukla sürece dahil edilemediği bilinen bir olgudur. Bu nedenle kuraklık toleransında temel bir role sahip olan kök sistemini morfolojik, anatomik, fizyolojik ve mimari yönden incelemek, bu özelliklerin genetik mekanizmalarını anlamak ve yetiştirme stratejilerini belirlemek için esastır. Bu çalışma ile iki farklı ekmeklik buğday çeşidinin tohumlarına, ACC deaminaz enzimi sentezleme özelliğine sahip bitki gelişimini tetikleyici üç farklı rizobakteri (PGPR) inoküle edilmiştir. Sonuçlar incelendiğinde, toplam kök uzunluğu ve kök büyüme açısı parametrelerinde çeşitler ve bakteri uygulamaları arasında anlamlı farklılıklar gözlenmiştir. Çalışma sonucunda her üç bakteri türünün de kök gelişimi üzerine pozitif etkisinin olduğu saptanmıştır. Brevibacillus choshinensis Gerek 79'da 95.4 cm toplam kök uzunluğu ile en etkili inokülasyon iken, Bezostaja 1'de Arthrobacter agilis 62.8 cm ile en etkili inokülasyon olmuştur. Bitki gelişimini teşvik edici bakterilerin buğday kök gelişimine pozitif yönde etkisinin olduğu ve gelecekte yapılacak çalışmalar ile bu etkinin detaylı analizlerinin yapılmasını öneriyoruz.
References
- Ali, S. Z., Sandhya, V., & Rao, L. V. (2014). Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Annals of Microbiology, 64, 493-502.
- Anderson, W. K. (2010). Closing the gap between actual and potential yield of rainfed wheat. The impacts of environment, management and cultivar. Field Crops Research, 116(1-2), 14-22.
- Ayrancı, R., Bayram, S., & Soylu, S. (2017). The Response on the Drought Stress Yield and Phenological Properties of Bread Wheat Genotypes in Grain Filling Stage. Tarla Bitkileri Merkez Araştırma Enstitüsü Dergisi, 26,112-118.
- Bayram, S., Öztürk, A., & Aydın, M. (2015). Seedling survival as a criterion of resistance to early drought in bread wheat genotypes. Turkish Journal of Nature and Science, 4(2), 30-35.
- Bi̇çer, Ş., Erdi̇nç, Ç., & Çömlekçi̇oğlu, N. (2020). The effects of root bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on plant growth and yield properties at different irrigation levels in cucumber. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(1), 8-20.
- Carlos, M. H. J., Stefani, P. V. Y., Janette, A. M., Melani, M. S. S., & Gabriela, P. O. (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological Research, 188, 53-61.
- Contesto, C., Desbrosses, G., Lefoulon, C., Bena, G., Borel, F., Galland, M., Gamet, L., Varoquaux, F., & Touraine, B. (2008). Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Science, 175, 178-189.
- Çekiç, C. Y. (2007) A study on physiological parameters which can be used as selection criteria in breeding wheat (Triticum aestivum L.) for drought resistance. Ankara University Graduate School of Natural and Applied Sciences, Soil Science and Plant Nutrition Program.
- Döös, B. R. (2002). Population growth and loss of arable land. Global Environmental Change, 12(4), 303-311.
Ehdaie, B., Layne, A. P., & Waines, J. G. (2012). Root system plasticity to drought influences grain yield in bread wheat. Euphytica, 186(1), 219-232.
- FAOSTAT. (2019). Food, Agriculture Organization of the United, Nations. Available from, http://faostat.fao.org/default.aspx. Accessed date: May 04, 2021.
- Gouache, D., Bogard, M., Thepot, S., Pegard, M., Le Bris, X., & Deswarte, J. C. (2015). From ideotypes to genotypes: approaches to adapt wheat phenology to climate change. Procedia Environmental Sciences, 29, 34-35.
- Glick, B. R., Cheng, Z., Czarny, J., & Duan, J. (2007). Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119(3), 329-339.
- Gontia-Mishra, I., Sasidharan, S., & Tiwari, S. (2014). Recent developments in use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase for conferring tolerance to biotic and abiotic stress. Biotechnology Letters, 36, 889-898.
- Govindasamy, V., Senthilkumar, M., Gaikwad, K., & Annapurna, K. (2008). Isolation and characterization of ACC deaminase gene from two plant growth-promoting rhizobacteria. Current Microbiology, 57, 312-317.
- Govindasamy, V., Senthilkumar, M., Mageshwaran, V., & Annapurna, K. (2009). Detection and characterization of ACC deaminase in plant growth promoting rhizobacteria. Journal of Plant Biochemistry and Biotechnology 18, 71-76.
- Hawkesford, M. J., Araus, J. L., Park, R., Calderini, D., Miralles, D., Shen, T., & Parry, M. A. J. (2013). Prospects of doubling global wheat yields. Food and Energy Security, 2(1), 34-48.
- Hohn, C. E. (2016). Discovery and Verification of Quantitative Trait Loci (QTLs) for Seminal Root Traits and Insights Into Root to Shoot Tradeoffs in Hexaploid Wheat (Triticum aestivum L.). University of California Riverside. Riverside, CA, USA.
- Lindh, M., Zhang, L., Falster, D., Franklin, O., & Brännström, A. (2014). Plant diversity and drought: the role of deep roots. Ecological modelling, 290, 85-93.
- Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112(2), 347-357.
- Manschadi, A. M., Christopher, J., deVoil, P., & Hammer, G. L. (2006). The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, 33(9), 823-837.
- Passioura, J. B. (1983). Roots and drought resistance. Agricultural Water Management, 7(1-3), 265-280.
- Passioura, J. B. (2012). Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Functional Plant Biology, 39(10-11), 851-859.
- Reeves, T. G., Thomas, G., & Ramsay, G. (2016). Save and grow in practice: maize, rice, wheat-a guide to sustainable cereal production. UN Food and Agriculture Organization, Rome.
- Reynolds, M., Dreccer, F., & Trethowan, R. (2007). Drought-adaptive traits derived from wheat wild relatives and landraces. Journal of Experimental Botany, 58(2), 177-186.
- Richards, R. A., & Passioura, J. B. (1981). Seminal root morphology and water use of wheat II. Genetic Variation 1. Crop Science, 21(2), 253-255.
- Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics, 18(1), 529.
- Schwartz, A. R., Ortiz, I., Maymon, M., Herbold, C. W., Fujishige, N. A., Vijanderan, J. A., Villella, W., Hanamoto, K., Diener, A., Sanders, E. R., & DeMason, D. A. (2013). Bacillus simplex-a little known PGPB with anti-fungal activity-alters pea legume root architecture and nodule morphology when co-inoculated with Rhizobium leguminosarum bv. viciae. Agronomy, 3(4), 595-620.
- Shaharoona, B., Arshad, M., & Zahir, Z. A. (2006). Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied Microbiology, 42, 155-159.
- Shahzad, S. M., Khalid, A., Arshad, M., Khalid, M., & Mehboob, I. (2008). Integrated use of plant growth promoting bacteria and p-enriched compost for improving growth, yield and nodulation of chickpea. Pakistan Journal of Botany, 40, 1735-1741.
- Sharma, S., Kulkarni, J., & Jha, B. (2016). Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology, 7, 11.
- Trnka, M., Hlavinka, P., & Semenov, M. A. (2015). Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. Journal of the Royal Society Interface, 12(112).
Uga, Y., Okuno, K., & Yano, M. (2011). Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, 62(8), 2485-2494.
- Weaver, J. E. (1926). Root development of field crops. McGRAW-Hill Book Company, INC. New York.
- Wintermans, P. C. A., Bakker, P., & Pieterse, C. M. J. (2016). Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Molecular Biology, 90(6), 623-634.
- Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415-421.