Research Article
BibTex RIS Cite

Hıyarda Kök Bakterisi (PGPR) ve Arbusküler Mikorizal Fungus (AMF) Aşılamalarının Farklı Sulama Seviyelerinde Bitki Gelişimi ve Verim Özelliklerine Etkileri

Year 2020, Volume: 6 Issue: 1, 8 - 20, 25.04.2020
https://doi.org/10.24180/ijaws.631048

Abstract

Bu çalışmada; farklı sulama seviyeleri koşulları
altında yetiştirilen sofralık hıyarda, bir ticari kök bakteri karışımı ile yine
ticari AMF preparatının bazı bitki gelişim özellikleri ve verime olan etkileri
belirlenmeye çalışılmıştır. Çalışma, Eskişehir Osmangazi Üniversitesi, Ziraat
Fakültesi deneme arazisi koşullarında gerçekleştirilmiştir. Sulama uygulaması
olarak, Class A pan buharlaşma değerinin %33, %66, %100 ve %133’ü olmak üzere
dört farklı sulama oranı kullanılmıştır. Bakteri ve fungus aşılaması ise
kontrol, AMF, PGPR ve AMF+PGPR (karışık inokulasyon) olmak üzere dört şekilde
gerçekleştirilmiştir. İki yıl tekrarlanan çalışmanın sonunda sürgün yaş
ağırlığı, sürgün kuru ağırlığı, sürgün boyu, sürgün gövde çapı, dekara verim,
pazarlanabilir verim, bitki başına meyve sayısı, ortalama meyve ağırlığı, bitki
başına verim parametreleri incelenmiştir. PGPR aşılamasında toplam verim ve
pazarlanabilir verimde birinci yılda en yüksek ortalama elde edilirken
(sırasıyla 6.54 ve 6.21 ton da-1), ikinci yılda toplam verimde
AMF+PGPR aşılaması (8.18 ton da-1), pazarlanabilir verimde ise AMF
aşılamasının (7.83 ton da-1) en yüksek ortalamaya sahip olduğu
görülmüştür. Bunun dışında %133 sulama seviyesinden hem toplam verim hem de
pazarlanabilir verimde her iki yılda da en iyi verim değerleri elde edilmiştir.
AMF ve AMF+PGPR aşılamaları bitki gelişim özelliklerinde daha etkili iken, tek
başına PGPR aşılamasının söz konusu özelliklerde yeterli olmadığı tespit
edilmiştir. Gerek verim özellikleri gerekse bitki gelişimi bakımından sulama
uygulamaları arasından genel olarak %133 seviyesinin başarılı sonuçlar verdiği
anlaşılmıştır.

Supporting Institution

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FDK-2017-6015

Thanks

PGPR inokulum kaynağı için Atatürk Üniversitesi, Ziraat Fakültesi, Bitki Koruma Bölümü öğretim üyesi Prof. Dr. Recep KOTAN’a, arazi çalışmalarının yürütülmesi için deneme alanı sağlayan Eskişehir Osmangazi Üniversitesi Ziraat Fakültesi, Bahçe Bitkileri Bölüm Başkanlığı’na teşekkür ederiz.

References

  • Abdalla, M. M., & El-Khoshıban, N. H. (2007). The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticium aestivum cultivars. Journal of Applied Sciences Research, 3(12), 2062-2074.
  • Arshad, M., Shaharoona, B., & Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere, 18(5), 611–620.
  • Aslantaş, R., Çakmakçı, R., & Sahin, F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae, 111, 371–377.
  • Asraf, M., & Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200, 535–546.
  • Bakr, J., Daood, H. G., Pék, Z., Helyes, L. & Posta, K. (2016). Yield and quality of mycorrhized processing tomato under water scarcity. Applied Ecology and Environmental Research, 15(1), 401-413.
  • Barrios-Masias, F. H., Knipfer, T., & McElrone, A. (2015). Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. Journal of Experimental Botany, 66, 6069–6078.
  • Bolandnazar, S., Aliasgarzad, N., Neishabury, M. R., & Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae, 114, 11–15.
  • Bona, E., Todeschini, V., Cantamessa, S., Cesaro, P., Copetta, A., Lingua, G., Gamalero, E., Berta, G., & Massa, N. (2018). Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae, 234, 160–165.
  • Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., & Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566–567, 1223–1234.
  • Budak, B., Khalvati M. A., & Özkan, Ş. S. (2017). The usage of native Arbuscular Mycorrhizal Fungi (AMF) in drought areas and low–input crop production systems. Adnan Menderes Üniversitesi Ziraat Dergisi, 14(2), 69-73.
  • Candido, V., Campanelli, G., D’Addabbo, T., Castronuovo, D., Perniola, & M., Camele, I. (2015). Growth and yield promoting effect of artificial mycorrhization on field tomato at different irrigation regimes. Scientia Horticulturae, 187, 35–43.
  • Conversa, G., Lazzizera, C., Bonasia, A., & Elia, A. (2013). Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biology and Fertility of Soils, 49, 691–703.
  • Çakmakçı, R. (2005). Bitki gelişimini teşvik eden rizobakterilerin tarımda kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(1), 97-107.
  • Cakmakci, Ö., Cakmakci, T., Demirer Durak, E., Demir, S., & Sensoy, S., (2017). Effects of arbuscular mycorrhizal fungi in melon (Cucumis melo L.) seedling under deficit irrigation. Fresenius Environmental Bulletin, 7513-7520.
  • Çalışkan, T., Aydın, A., Ortaş, İ., Sezen, M., & Eken, M. (2017). Kısıtlı su ve mikoriza uygulamalarının genç Kütdiken limonunun gelişimi üzerine etkileri. Alata, 16(2), 28-36.
  • Çiylez, S., & Eşitken, A. (2018). Mikoriza ve BBAR uygulamalarının çilekte büyüme üzerine etkileri. Selçuk Tarım ve Gıda Bilimleri Dergisi, 32(3), 361-365.
  • Dikici, M. (2019). Asi Havzası’nda (Türkiye) kuraklık analizi. Doğal Afetler ve Çevre Dergisi, 5(1), 22-40.
  • Doğan, S., & Tüzer, M. (2011). Küresel iklim değişikliği ve potansiyel etkileri. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 12(1), 21s.
  • Doğmuş Lehtijarvi, H. T., & Lehtijarvi, A. (2006). Yarı kurak mıntıkalarda gerçekleştirilecek ağaçlandırma çalışmalarında mikorizalı fidan kullanımı ve önemi. Türkiye'de Yarı Kurak Bölgelerde Yapılan Ağaçlandırma ve Erozyon Kontrolu Uygulamalarının Değerlendirilmesi Çalıştayı, 7-10 Kasım, Nevşehir.
  • Ekici, M., & Yıldırım, E. (2015). Bazı bitki gelişimini teşvik eden rizobakterilerin brokkoli (Brassica oleraceae L. var. italica) fide gelişimi ve fide kalitesi üzerine etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 28(2), 53-59.
  • Ertek, A., & Kanber, R. (2003). Effects of different irrigation programs on the lint out-turn of cotton under drip irrigation. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 6, 106-116.
  • Ertek, A., Sensoy, S., Küçükyumuk, C. & Gedik, I. (2004). Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.), Agricultural Water Management. 67, 63–76.
  • Faostat, (2017). Statistic Database. http://faostat.fao.org/. Erişim tarihi: 16 Eylül 2019.
  • Ghanbari Zarmehri, S., Moosavi S. G., Zabihi H. R., & Seghateslami M. J. (2013). The effect of plant growth promoting rhizobacteria (PGPR) and zinc fertilizer on forage yield of maize under water deficit stress conditions. Journal of Applied Science, Engineering and Technology, 3(23), 3281-3290.
  • Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., & Khodaei-Joghan, A. (2013). Effects of Arbuscular Mycorrhizal İnoculation On Growth, Yield, Nutrient Uptake and Irrigation Water Productivity of Sunflowers Grown Under Drought Stress. Agricultural Water Management, 117, 106-114.
  • Hassan, M. K., McInroy, J. A., & Kloepper, J. W. (2019). The interactions of rhizodeposits with Plant Growth-Promoting Rhizobacteria in the rhizosphere: a review. Agriculture, 9(142), 1-13.
  • Howell T. A., Cuenca, R. H., & Solomon K. H. (1990). Crop yield response. Manegement of farm irrigation systems. Chap. 5. An ASAE Monograph, St. Joseph, MI pp. 93-116. James, L. G. (1988). Principles of Farm İrrigation Systems Design, John Wiley and Sons. Inc., New York, s 543.
  • Karipçin, M. Z., & Şatır, N. Y. (2016). Su stresi koşullarında yetiştirilen marul sebzesinin verim ve besin içeriğine Arbusküler Mikorizal Fungus (AMF)’un etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(3), 406-413.
  • Karlıdağ, H., Eşitken, A., Turan, M., & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae,114, 16–20.
  • Karthikeyan, B., Joe, M. M., Jaleel, C. A. & Deiveekasundaram, M. (2010). Effect of root inoculation with Plant Growth Promoting Rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don. Natura Croatica, 19(1), 205–212.
  • Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259-1266.
  • Kokalis-Burelle, N., Kloepper, J. W., & Reddy, M. S. (2006). Plant growthpromoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Applied Soil Ecology, 31, 91-100.
  • Kotan, R. (2014). Faydalı bakterilerin tarımda kullanımı. Harman Time, 11, 44-48.
  • Küçükkılavuz, E. (2009). Küresel ısınmanın su kaynakları üzerine etkileri: Türkiye örneği. Yüksek Lisans Tezi, Harran Üniversitesi, Sosyal Bilimler Enstitüsü, Şanlıurfa.
  • Le, A. T., Pék, Z., Takács, S., Neményi, A., & Helyes, L. (2018). The effect of plant growth-promoting rhizobacteria on yield, water use efficiency and brix degree of processing tomato. Plant Soil Environment, 64(11), 523–529.
  • Lucy, M., Reed, E., & Glick, B. R. (2004). Application of free living Plant Growth-Promoting Rhizobacteria. Antonie van Leeuwenhoek, 86, 1-25.
  • Marulanda, A., Barea, J. M., & Azco´n, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115–124.
  • Miransari, M., Bahrami, H. A., Rejali, F., & Malakouti, M. J. (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biology Biochemistry. 40, 1197-1206.
  • Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429–448.
  • Narula, N., Deubel, A., Gans, W., Behl, R.K., & Merbach, W. (2006). Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environment, 52(3),119–129.
  • Naseri, R., Moghadam, A., Darabi, F., Hatami, A., & Tahmasebei, G. R. (2013). The effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (S.C. 704) as a second cropping in western Iran. Bulletin of Environment, Pharmacology and Life Sciences, 2(10), 104-112.
  • Naveed, M., Hussain, M. B., Zahir, A. Z., Mitter, B., & Sessitsch, A. (2014). Drought stres amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73, 121– 131.
  • Rozpadek, P., Rapata-Kozik, M., Wezowicz, K., Grandin, A., Karlsson, S., Wazny, R., Anielska, T., & Turnau, K. (2016). Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiology and Biochemistry, 107, 264-272.
  • Sahin, U., Ekinci, M., Kiziloglu, F. M., Yildirim, E., Turan, M., Kotan, R., & Ors, S. (2015). Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth, and nutrient uptake of lettuce plants under different irrigation levels. Horticultural Science, 50(9),1379–1386.
  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnolgy. 34(10), 635–648.
  • Samancıoğlu, A., Yıldırım, E., Şahin, Ü. (2016). Bitki gelişimini teşvik eden rizobakteri uygulamalarının farklı sulama seviyelerinde yetiştirilen lahanada fide gelişimi, bazı fizyolojik ve biyokimyasal özelliklerin etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Bilimleri Dergisi, 19(3), 332-338.
  • Sezen, S. M., Yazar, A., & Eker, S. (2006). Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management, 81, 115–131.
  • Subramanian, K. S., Santhanakrishnan, P., & Balasubramanian, P. (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, (Amst.) 107, 245–253.
  • Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., & Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38, 327-333.
  • Tüfenkçi, Ş., Demir, S., Şensoy, S., Ünsal, H., Demirer, E., Erdinç, Ç., Biçer, Ş., & Ekincialp, A., (2012). The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turkish Journal of Agriculture and Forestry, 36, 317-327.
  • TÜİK. (2018). Bitkisel Üretim İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn=104&locale=tr. Erişim tarihi: 16 Eylül 2019.
  • Van Loon, L. C. (2007). Plant responses to plant gowth-promoting rhizobacteria. European Journal of Plant Patholgy, 119, 243–254.
  • Walia, A., Metha, P., & Chauhan, A. (2013). Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato transplant under net house conditions. Procedings of the National Academy of Sciences India Section B: Biological Sciences, 84(1), 145-155.
  • Wang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., Wang, Y. P., & Guo, J. H. (2012). Induction of drought tolerance in cucumber plants by a consortium of three Plant Growth-Promoting Rhizobacterium strains. Public Library of Science One, 7(12), 1-10.
  • Yıldırım, M., Bahar, E., & Demirel, K. (2015). Farklı sulama suyu seviyelerinin serada yetiştirilen kıvırcık marulun (Lactuca sativa var. campania) verimi ve gelişimi üzerine etkileri. Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 3(1), 29-34.

The Effects of Root Bacteria (PGPR) and Arbuscular Mycorrhizal Fungi (AMF) Inoculation on Plant Growth and Yield Properties at Different Irrigation Levels in Cucumber

Year 2020, Volume: 6 Issue: 1, 8 - 20, 25.04.2020
https://doi.org/10.24180/ijaws.631048

Abstract

In this study, it was aimed to determine the
effects of a mixture of commercial rhizobacteria and AM fungi on some plant
growth characteristics and yield in cucumber grown under distinct irrigation
levels. The study was carried out in Eskişehir Osmangazi University, Faculty of
Agriculture, experimental land conditions. Four different irrigation rates,
33%, 66%, 100% and 133%, were used as irrigation for the evaporation value of
Class A pan. Bacterial and fungal inoculation was performed in four ways as
control, AMF, PGPR and AMF + PGPR (mixed inoculation). At the end of the study,
which was repeated for two years, the parameters of shoot fresh weight, shoot
dry weight, shoot height, shoot diameter, yield, marketable yield, number of
fruits per plant, average fruit weight, yield per plant parameters were
examined. In the first year, total yield and marketable yield were the highest
(6.54 and 6.21 tons da-1, respectively) for PGPR inoculation. The
highest total yield (8.18 tons da-1) was obtained from application AMF-PGPR
inoculation; while the highest marketable yield (7.83 tons-1) was
taken with AMF inoculation in the second year. Additionaly, the best yield
values were obtained in both total yield and marketable yield with application
of 133% irrigation level in both years. It was determined that while AMF and
AMF + PGPR vaccines were more effective in plant development and PGPR
vaccination was not sufficient seperately. As a result, in terms of both yield
characteristics and plant development, it was concluded that 133% level of the
irrigation applications was more efficient than others.

Project Number

FDK-2017-6015

References

  • Abdalla, M. M., & El-Khoshıban, N. H. (2007). The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticium aestivum cultivars. Journal of Applied Sciences Research, 3(12), 2062-2074.
  • Arshad, M., Shaharoona, B., & Mahmood, T. (2008). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere, 18(5), 611–620.
  • Aslantaş, R., Çakmakçı, R., & Sahin, F. (2007). Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Scientia Horticulturae, 111, 371–377.
  • Asraf, M., & Iram, A. (2005). Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora, 200, 535–546.
  • Bakr, J., Daood, H. G., Pék, Z., Helyes, L. & Posta, K. (2016). Yield and quality of mycorrhized processing tomato under water scarcity. Applied Ecology and Environmental Research, 15(1), 401-413.
  • Barrios-Masias, F. H., Knipfer, T., & McElrone, A. (2015). Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. Journal of Experimental Botany, 66, 6069–6078.
  • Bolandnazar, S., Aliasgarzad, N., Neishabury, M. R., & Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water deficit condition. Scientia Horticulturae, 114, 11–15.
  • Bona, E., Todeschini, V., Cantamessa, S., Cesaro, P., Copetta, A., Lingua, G., Gamalero, E., Berta, G., & Massa, N. (2018). Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae, 234, 160–165.
  • Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., & Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Science of the Total Environment, 566–567, 1223–1234.
  • Budak, B., Khalvati M. A., & Özkan, Ş. S. (2017). The usage of native Arbuscular Mycorrhizal Fungi (AMF) in drought areas and low–input crop production systems. Adnan Menderes Üniversitesi Ziraat Dergisi, 14(2), 69-73.
  • Candido, V., Campanelli, G., D’Addabbo, T., Castronuovo, D., Perniola, & M., Camele, I. (2015). Growth and yield promoting effect of artificial mycorrhization on field tomato at different irrigation regimes. Scientia Horticulturae, 187, 35–43.
  • Conversa, G., Lazzizera, C., Bonasia, A., & Elia, A. (2013). Yield and phosphorus uptake of a processing tomato crop grown at different phosphorus levels in a calcareous soil as affected by mycorrhizal inoculation under field conditions. Biology and Fertility of Soils, 49, 691–703.
  • Çakmakçı, R. (2005). Bitki gelişimini teşvik eden rizobakterilerin tarımda kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(1), 97-107.
  • Cakmakci, Ö., Cakmakci, T., Demirer Durak, E., Demir, S., & Sensoy, S., (2017). Effects of arbuscular mycorrhizal fungi in melon (Cucumis melo L.) seedling under deficit irrigation. Fresenius Environmental Bulletin, 7513-7520.
  • Çalışkan, T., Aydın, A., Ortaş, İ., Sezen, M., & Eken, M. (2017). Kısıtlı su ve mikoriza uygulamalarının genç Kütdiken limonunun gelişimi üzerine etkileri. Alata, 16(2), 28-36.
  • Çiylez, S., & Eşitken, A. (2018). Mikoriza ve BBAR uygulamalarının çilekte büyüme üzerine etkileri. Selçuk Tarım ve Gıda Bilimleri Dergisi, 32(3), 361-365.
  • Dikici, M. (2019). Asi Havzası’nda (Türkiye) kuraklık analizi. Doğal Afetler ve Çevre Dergisi, 5(1), 22-40.
  • Doğan, S., & Tüzer, M. (2011). Küresel iklim değişikliği ve potansiyel etkileri. Cumhuriyet Üniversitesi İktisadi ve İdari Bilimler Dergisi, 12(1), 21s.
  • Doğmuş Lehtijarvi, H. T., & Lehtijarvi, A. (2006). Yarı kurak mıntıkalarda gerçekleştirilecek ağaçlandırma çalışmalarında mikorizalı fidan kullanımı ve önemi. Türkiye'de Yarı Kurak Bölgelerde Yapılan Ağaçlandırma ve Erozyon Kontrolu Uygulamalarının Değerlendirilmesi Çalıştayı, 7-10 Kasım, Nevşehir.
  • Ekici, M., & Yıldırım, E. (2015). Bazı bitki gelişimini teşvik eden rizobakterilerin brokkoli (Brassica oleraceae L. var. italica) fide gelişimi ve fide kalitesi üzerine etkileri. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi, 28(2), 53-59.
  • Ertek, A., & Kanber, R. (2003). Effects of different irrigation programs on the lint out-turn of cotton under drip irrigation. Kahramanmaras Sutcu Imam University Journal of Engineering Sciences, 6, 106-116.
  • Ertek, A., Sensoy, S., Küçükyumuk, C. & Gedik, I. (2004). Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.), Agricultural Water Management. 67, 63–76.
  • Faostat, (2017). Statistic Database. http://faostat.fao.org/. Erişim tarihi: 16 Eylül 2019.
  • Ghanbari Zarmehri, S., Moosavi S. G., Zabihi H. R., & Seghateslami M. J. (2013). The effect of plant growth promoting rhizobacteria (PGPR) and zinc fertilizer on forage yield of maize under water deficit stress conditions. Journal of Applied Science, Engineering and Technology, 3(23), 3281-3290.
  • Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., & Khodaei-Joghan, A. (2013). Effects of Arbuscular Mycorrhizal İnoculation On Growth, Yield, Nutrient Uptake and Irrigation Water Productivity of Sunflowers Grown Under Drought Stress. Agricultural Water Management, 117, 106-114.
  • Hassan, M. K., McInroy, J. A., & Kloepper, J. W. (2019). The interactions of rhizodeposits with Plant Growth-Promoting Rhizobacteria in the rhizosphere: a review. Agriculture, 9(142), 1-13.
  • Howell T. A., Cuenca, R. H., & Solomon K. H. (1990). Crop yield response. Manegement of farm irrigation systems. Chap. 5. An ASAE Monograph, St. Joseph, MI pp. 93-116. James, L. G. (1988). Principles of Farm İrrigation Systems Design, John Wiley and Sons. Inc., New York, s 543.
  • Karipçin, M. Z., & Şatır, N. Y. (2016). Su stresi koşullarında yetiştirilen marul sebzesinin verim ve besin içeriğine Arbusküler Mikorizal Fungus (AMF)’un etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 26(3), 406-413.
  • Karlıdağ, H., Eşitken, A., Turan, M., & Sahin, F. (2007). Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Scientia Horticulturae,114, 16–20.
  • Karthikeyan, B., Joe, M. M., Jaleel, C. A. & Deiveekasundaram, M. (2010). Effect of root inoculation with Plant Growth Promoting Rhizobacteria (PGPR) on plant growth, alkaloid content and nutrient control of Catharanthus roseus (L.) G. Don. Natura Croatica, 19(1), 205–212.
  • Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259-1266.
  • Kokalis-Burelle, N., Kloepper, J. W., & Reddy, M. S. (2006). Plant growthpromoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Applied Soil Ecology, 31, 91-100.
  • Kotan, R. (2014). Faydalı bakterilerin tarımda kullanımı. Harman Time, 11, 44-48.
  • Küçükkılavuz, E. (2009). Küresel ısınmanın su kaynakları üzerine etkileri: Türkiye örneği. Yüksek Lisans Tezi, Harran Üniversitesi, Sosyal Bilimler Enstitüsü, Şanlıurfa.
  • Le, A. T., Pék, Z., Takács, S., Neményi, A., & Helyes, L. (2018). The effect of plant growth-promoting rhizobacteria on yield, water use efficiency and brix degree of processing tomato. Plant Soil Environment, 64(11), 523–529.
  • Lucy, M., Reed, E., & Glick, B. R. (2004). Application of free living Plant Growth-Promoting Rhizobacteria. Antonie van Leeuwenhoek, 86, 1-25.
  • Marulanda, A., Barea, J. M., & Azco´n, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM Fungi and Bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115–124.
  • Miransari, M., Bahrami, H. A., Rejali, F., & Malakouti, M. J. (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biology Biochemistry. 40, 1197-1206.
  • Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances, 32, 429–448.
  • Narula, N., Deubel, A., Gans, W., Behl, R.K., & Merbach, W. (2006). Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environment, 52(3),119–129.
  • Naseri, R., Moghadam, A., Darabi, F., Hatami, A., & Tahmasebei, G. R. (2013). The effect of deficit irrigation and Azotobacter chroococcum and Azospirillum brasilense on grain yield, yield components of maize (S.C. 704) as a second cropping in western Iran. Bulletin of Environment, Pharmacology and Life Sciences, 2(10), 104-112.
  • Naveed, M., Hussain, M. B., Zahir, A. Z., Mitter, B., & Sessitsch, A. (2014). Drought stres amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regulation, 73, 121– 131.
  • Rozpadek, P., Rapata-Kozik, M., Wezowicz, K., Grandin, A., Karlsson, S., Wazny, R., Anielska, T., & Turnau, K. (2016). Arbuscular mycorrhiza improves yield and nutritional properties of onion (Allium cepa). Plant Physiology and Biochemistry, 107, 264-272.
  • Sahin, U., Ekinci, M., Kiziloglu, F. M., Yildirim, E., Turan, M., Kotan, R., & Ors, S. (2015). Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth, and nutrient uptake of lettuce plants under different irrigation levels. Horticultural Science, 50(9),1379–1386.
  • Saleem, M., Arshad, M., Hussain, S., & Bhatti, A. S. (2007). Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. Journal of Industrial Microbiology & Biotechnolgy. 34(10), 635–648.
  • Samancıoğlu, A., Yıldırım, E., Şahin, Ü. (2016). Bitki gelişimini teşvik eden rizobakteri uygulamalarının farklı sulama seviyelerinde yetiştirilen lahanada fide gelişimi, bazı fizyolojik ve biyokimyasal özelliklerin etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Bilimleri Dergisi, 19(3), 332-338.
  • Sezen, S. M., Yazar, A., & Eker, S. (2006). Effect of drip irrigation regimes on yield and quality of field grown bell pepper. Agricultural Water Management, 81, 115–131.
  • Subramanian, K. S., Santhanakrishnan, P., & Balasubramanian, P. (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, (Amst.) 107, 245–253.
  • Turan, M., Ekinci, M., Yildirim, E., Güneş, A., Karagöz, K., Kotan, R., & Dursun, A. (2014). Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turkish Journal of Agriculture and Forestry, 38, 327-333.
  • Tüfenkçi, Ş., Demir, S., Şensoy, S., Ünsal, H., Demirer, E., Erdinç, Ç., Biçer, Ş., & Ekincialp, A., (2012). The effects of arbuscular mycorrhizal fungi on the seedling growth of four hybrid cucumber (Cucumis sativus L.) cultivars. Turkish Journal of Agriculture and Forestry, 36, 317-327.
  • TÜİK. (2018). Bitkisel Üretim İstatistikleri. https://biruni.tuik.gov.tr/medas/?kn=104&locale=tr. Erişim tarihi: 16 Eylül 2019.
  • Van Loon, L. C. (2007). Plant responses to plant gowth-promoting rhizobacteria. European Journal of Plant Patholgy, 119, 243–254.
  • Walia, A., Metha, P., & Chauhan, A. (2013). Effect of Bacillus subtilis strain CKT1 as inoculum on growth of tomato transplant under net house conditions. Procedings of the National Academy of Sciences India Section B: Biological Sciences, 84(1), 145-155.
  • Wang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., Wang, Y. P., & Guo, J. H. (2012). Induction of drought tolerance in cucumber plants by a consortium of three Plant Growth-Promoting Rhizobacterium strains. Public Library of Science One, 7(12), 1-10.
  • Yıldırım, M., Bahar, E., & Demirel, K. (2015). Farklı sulama suyu seviyelerinin serada yetiştirilen kıvırcık marulun (Lactuca sativa var. campania) verimi ve gelişimi üzerine etkileri. Çanakkale Onsekiz Mart Üniversitesi Ziraat Fakültesi Dergisi, 3(1), 29-34.
There are 55 citations in total.

Details

Primary Language Turkish
Journal Section Horticultural Sciences
Authors

Şeyhmus Biçer 0000-0001-5446-4757

Çeknas Erdinç This is me 0000-0003-1208-032X

Nuray Çömlekçioğlu 0000-0001-7189-613X

Project Number FDK-2017-6015
Publication Date April 25, 2020
Submission Date October 8, 2019
Acceptance Date March 2, 2020
Published in Issue Year 2020 Volume: 6 Issue: 1

Cite

APA Biçer, Ş., Erdinç, Ç., & Çömlekçioğlu, N. (2020). Hıyarda Kök Bakterisi (PGPR) ve Arbusküler Mikorizal Fungus (AMF) Aşılamalarının Farklı Sulama Seviyelerinde Bitki Gelişimi ve Verim Özelliklerine Etkileri. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 6(1), 8-20. https://doi.org/10.24180/ijaws.631048

17365       17368       17367        17366      17369     17370