Research Article
BibTex RIS Cite

Domateste Alternaria solani (Ell. & G. Martin) Sor.’ye Karşı Bazı Endofit Bakterilerin Etkisi

Year 2020, Volume: 6 Issue: 3, 469 - 477, 21.12.2020
https://doi.org/10.24180/ijaws.770380

Abstract

Dünyada domates yetiştiriciliği yapılan tüm alanlarda erken yanıklık hastalığına neden olan Alternaria solani (Ell. and G. Martin) Sor. önemli derecede ürün kayıplarına neden olmaktadır. Bu araştırmada, 8 endofit bakteri (EB)’ nin (T2K2, T26Y1, G116S2, T13K1, V17G2, V30Y3, V38K1 ve V40K2) A. solani’nin neden olduğu erken yanıklık hastalığına ve domatesin morfolojik gelişim parametrelerine olan etkileri araştırılmıştır. Çalışmanın ilk aşamasında EB izolatlarının in-vivo’da bitki morfolojik gelişimine ve in-vitro’da A. solani’ye karşı antagonistik etkilerine bakılmıştır. Bu çalışmada başarılı bulunan EB izolatları ile ikinci aşamaya geçilmiştir. Bu aşamada, seçilen EB izolatlarının A. solani ile enfekteli bitkilerin gelişim parametreleri ile hastalığa olan etkileri değerlendirilmiştir. EB izolatlarının hastalığı %11-53 oranında baskıladığı belirlenmiştir. In-vivo testlerde T13K1, V40K2 ve V30Y3 izolatları hastalığa karşı en etkili uygulamalar olmuştur. Ayrıca V40K2 izolatı, hastalıksız ve hastalık stresi altında bitkilerin gelişimini genel olarak arttırmıştır. Bu izolatı takiben enfektesiz bitkilerde G116S2 izolatının kök yaş ağırlığını (0.49 g), enfekteli bitkilerde ise sürgün boyunu (59.17 cm) arttırırken, T13K1 izolatı ise enfektesiz uygulamalarda sürgün yaş (3.14 g) ve kuru ağırlığını (0.34 g) arttırmıştır. Enfekteli uygulamalarda negatif kontrole (K(-)) göre EB izolatları, bitki gelişimini olumlu etkilerken, pozitif kontrole (K(+)) göre farklılık göstermiştir. Sonuç olarak, kullanılan EB izolatlarının pestisit ve sentetik gübre girdisini azaltma potansiyelinin olduğu, fakat bu etkinin patojen-endofit bakteri interaksiyonuna göre farklılık gösterebileceği belirlenmiştir.

Supporting Institution

Bu çalışma Van Yüzüncü Yıl Üniversitesi, Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2018-7553 nolu yüksek lisans tez projesi ile desteklenmiştir.

Project Number

FYL-2018-7553

References

  • Babier, Y. (2020). Van gölü havzasından izole edilen endofit bakterilerin karakterizasyonu ve ın vıtro koşullarda bazı bitki patojeni bakterilere karşı antagonistik etkilerinin belirlenmesi. Yüksek Lisans Tezi, Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.
  • Calvo, P., Watts, D. B., Kloepper, J. W., & Torbert, H. A. (2017). Effect of microbial‐based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science, 180(1), 56-70.
  • Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clément, C., & Barka, E. A. (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71(4), 1685-1693.
  • Çifçi, G., & Altınok, H. H. (2019). Patlıcan tohumlarında bitki büyüme düzenleyici rizobakteri uygulamalarının kurşuni küf (Botrytis cinerea Pers.: Fr.) hastalığına etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(3), 421-429.
  • Del Barrio-Duque, A., Ley, J., Samad, A., Antonielli, L., Sessitsch, A., & Compant, S. (2019). Beneficial endophytic bacteria-serendipita indica interaction for crop enhancement and resistance to phytopathogens. Frontiers in Microbiology, 10, 2888.
  • Fakhraei, D. (2015). Endofitik bakterilerin hıyar bitkilerinde dayanıklılığı uyarma yoluyla Fusarium solgunluğuna etkisinin araştırılması. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Gamalero, E., Berta, G., & Glick, B. R. (2009). The use ofmicroorganisms to facilitate the growth of plants in saline soils. In: M. S. Khan, A. Zaidi, & J. Musarrat (Eds.). Microbial Strategies for Crop Improvement (pp. 1-22). Dordrecht Heidelberg, London: Springer.
  • Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27–39.
  • Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 1–15.
  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1), 30-39.
  • Glick, B.R., 2015. Biocontrol mechanisms. In: B.R. Glick (Eds.) Beneficial Plant-Bacterial Interactions. (pp. 123–157). New York, Springer.
  • Goswami, D., Pithwa, S., Dhandhukia, P., & Thakker, J. N. (2014). Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 9(1), 566-576.
  • Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395-412.
  • Hardoim, P. R. (2011). Bacterial endophytes of rice: their diversity, characteristics and perspectives. Doctoral Thesis, University of Groningen, Mathematics and Natural Sciences, Netherlands.
  • Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463-471.
  • Harman, G. E., Howell, C. R., Vitebo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56.
  • Huang, P., de-Bashan, L., Crocker, T., Kloepper, J. W., & Bashan, Y. (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils, 53(2), 199-208.
  • Jetiyanon, K., & Kloepper, J. W. (2002). Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control, 24(3), 285-291.
  • Jha, B., Gontia, I., & Hartmann, A. (2012). The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant and Soil, 356(1-2), 265-277.
  • Jones, J. B., Jones, J. P., Stall, R. E., & Zitter, T. A. (1991). Infectious antifungal. Plant physiology, 108, 17-27.
  • Joseph, A., Igbinosa, O. B., Alori, E. T., Ademiluyi, B. O., & Aluko, A. P. (2017). Effectiveness of Pseudomonas species in the management of tomato early blight pathogen Alternaria solani. African Journal of Microbiology Research, 11(23), 972-976.
  • Khan, N., Mishra, A., & Nautiyal, C. S. (2012). Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62(2), 65-74.
  • Latha, P., Anand, T., Ragupathi, N., Prakasam, V., & Samiyappan, R. (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biological Control, 50(2), 85-93.
  • Latif Khan, A., Ahmed Halo, B., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J., Al-Harrasi, A., & Lee, I. J. (2016). Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solarium lycopersicum. Electronic Journal of Biotechnology, 19(3), 58-64.
  • Leclere, V., Béchet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Philippe, T., Fre´de´rique, G., Marle`ne, C., & Jacques, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71(8), 4577-4584.
  • Li, H., Ding, X., Wang, C., Ke, H., Wu, Z., WANG, Y., Liu, H., & Guo, J. (2016). Control of tomato yellow leaf curl virüs disease by Enterobacter asburiae BQ9 as a result of priming plant resistance in tomatoes. Turkish Journal of Biology, 40(1), 150-159.
  • Liu, S., Che, Z., & Chen, G. (2016). Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Protection, 84, 56-61.
  • Maji, S., & Chakrabartty, P. K. (2014). Biocontrol of bacterial wilt of tomato caused by'Ralstonia solanacearum'by isolates of plant growth promoting rhizobacteria. Australian Journal of Crop Science, 8(2), 208-214.
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19.
  • Momel, T., & Pemezny, K. (2006). 2006 Florida plant disease management guide: Tomato. https://plantpath.ifas.ufl.edu/rsol/RalstoniaPublications_PDF/IFASExt2006_FloridaPDMG-V3-53.pdf. Erişim tarihi: 27 Haziran 2020.
  • Nandhini, S., Sendhilvel, V., & Babu, S. (2012). Endophytic bacteria from tomato and their efficacy against Fusarium oxysporum f. sp. lycopersici, the wilt pathogen. Journal of Biopesticides, 5(2), 178.
  • Neeraj, V. S., & Verma, S. (2010). Alternaria diseases of vegetable crops and new approaches for its control. Asian Journal of Experimental Biological Sciences, 1(3), 681-692.
  • Oberson, A., Frossard, E., Bühlmann, C., Mayer, J., Mäder, P., & Lüscher, A. (2013). Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant and Soil, 371(1-2), 237-255.
  • Olur, G. (2020). Tuzlu ortamda gelişen bitkilerden izole edilen endofit bakterilerin hıyar bitkisinde köşeli yaprak leke hastalığı (Pseudomonas syringae pv. lachrymans), tuz stresi ve bitki gelişimine etkileri. Yüksek Lisans Tezi, Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.
  • Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701-712.
  • Özaktan, H., Çakır, B., Gül, A., Yolageldi, L., Akköprü, A., Fakhraei, D., & Akbaba, M. (2015). Isolation and evaluation of endophytic bacteria against Fusarium oxysporum f. sp. cucumerinum infecting cucumber plants. Austin Journal of Plant Biology, 1(1), 1003.
  • Peralta, I. E., Knapp, S., & Spooner, D. M. (2005). New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany, 30(2), 424-434.
  • Priyanka, T. A., Kotasthane, A. S., Kosharia, A., Kushwah, R., Zaidi, N. W., & Singh, U. S. (2017). Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech, 7(1), 7-27.
  • Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 21(1), 30.
  • Saito, S., Michailides, T. J., & Xiao, C. L. (2016). Fungicide resistance profiling in Botrytis cinerea populations from blueberry in California and Washington and their impact on control of gray mold. Plant Disease, 100(10), 2087-2093.
  • Shinde, B. A., Dholakia, B. B., Hussain, K., Aharoni, A., Giri, A. P., & Kamble, A. C. (2018). WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant biotechnology Journal, 16(8), 1502-1513.
  • Song, W., Ma, X., Tan, H., & Zhou, J. (2011). Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiology and Biochemistry, 49(7), 693-700.
  • Soylu, E. M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 7-18.
  • Sundaramoorthy, S., & Balabaskar, P. (2012). Consortial effect of endophytic and plant growth promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. Journal of Plant Pathology & Microbiology, 3(7), 1-5.
  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43.
  • Sülü, M. S., Bozkurt, İ. A., & Soylu, S. (2016). Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21(1), 103-111.
  • Townsend, G.K., & Heuberger, J.W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report, 27, 340-343.
  • Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & McInroy, J. A. (2017). Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PloS One, 12(7), e0181201.
  • Yıldız, M., Gürkan, O., Turgut, C., Kaya, Ü., & Ünal, G. (2005). Tarımsal savaşımda kullanılan pestisitlerin yol açtığı çevre sorunları. http://www.zmo.org.tr/resimler/ekler/dd7a04804967197_ek.pdf. Erişim tarihi: 02 Haziran 2020.

The Effect of Some Endophytic Bacteria Against Alternaria solani (Ell. & G. Martin) Sor. in Tomato

Year 2020, Volume: 6 Issue: 3, 469 - 477, 21.12.2020
https://doi.org/10.24180/ijaws.770380

Abstract

Alternaria solani (Ell. and G. Martin) Sor., causes early blight disease in all areas of tomato cultivation in the world, causes significant product losses. In this study, the effects of 8 endophytic bacteria (EB) (T2K2, T26Y1, G116S2, T13K1, V17G2, V30Y3, V38K1 and V40K2) and the morphological development parameters of tomato were investigated on early blight disease caused by A. solani. In the first stage of the study, the plant morphological development of EB isolates in-vivo and antagonistic effects against A. solani in-vitro were investigated. In this study, the second phase was set up with the effective EB isolates. At this stage, the effects of selected EB isolates on the disease parameters of A. solani-infected plants and the disease were evaluated. It was determined that EB isolates suppress the disease by 11-53%. In-vivo tests, T13K1, V40K2 and V30Y3 isolates were determined as the most effective treatments against the disease. In addition, the V40K2 isolate increased overall growth of the healthy plants and under disease stress. Following this isolate, the root weight (0.49g) of the G116S2 isolate increased in non-infected plants, the shoot length (59.17 cm) in the infected plants, while the T13K1 isolate increased the shoot fresh (3.14 g) and dry weight (0.34 g) in non-infected treatments. In infectious treatments, EB isolates had a positive effect on plant growth compared to negative control (K(-)), but differed according to positive control (K(+)). As a result, it has been determined that the EB isolates used have the potential to reduce pesticide and synthetic fertilizer input, but this effect may differ according to the pathogen-endophytic bacterium interaction.

Project Number

FYL-2018-7553

References

  • Babier, Y. (2020). Van gölü havzasından izole edilen endofit bakterilerin karakterizasyonu ve ın vıtro koşullarda bazı bitki patojeni bakterilere karşı antagonistik etkilerinin belirlenmesi. Yüksek Lisans Tezi, Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.
  • Calvo, P., Watts, D. B., Kloepper, J. W., & Torbert, H. A. (2017). Effect of microbial‐based inoculants on nutrient concentrations and early root morphology of corn (Zea mays). Journal of Plant Nutrition and Soil Science, 180(1), 56-70.
  • Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clément, C., & Barka, E. A. (2005). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology, 71(4), 1685-1693.
  • Çifçi, G., & Altınok, H. H. (2019). Patlıcan tohumlarında bitki büyüme düzenleyici rizobakteri uygulamalarının kurşuni küf (Botrytis cinerea Pers.: Fr.) hastalığına etkileri. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 22(3), 421-429.
  • Del Barrio-Duque, A., Ley, J., Samad, A., Antonielli, L., Sessitsch, A., & Compant, S. (2019). Beneficial endophytic bacteria-serendipita indica interaction for crop enhancement and resistance to phytopathogens. Frontiers in Microbiology, 10, 2888.
  • Fakhraei, D. (2015). Endofitik bakterilerin hıyar bitkilerinde dayanıklılığı uyarma yoluyla Fusarium solgunluğuna etkisinin araştırılması. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Gamalero, E., Berta, G., & Glick, B. R. (2009). The use ofmicroorganisms to facilitate the growth of plants in saline soils. In: M. S. Khan, A. Zaidi, & J. Musarrat (Eds.). Microbial Strategies for Crop Improvement (pp. 1-22). Dordrecht Heidelberg, London: Springer.
  • Gao, Z., Zhang, B., Liu, H., Han, J., & Zhang, Y. (2017). Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biological Control, 105, 27–39.
  • Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 1–15.
  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological research, 169(1), 30-39.
  • Glick, B.R., 2015. Biocontrol mechanisms. In: B.R. Glick (Eds.) Beneficial Plant-Bacterial Interactions. (pp. 123–157). New York, Springer.
  • Goswami, D., Pithwa, S., Dhandhukia, P., & Thakker, J. N. (2014). Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, 9(1), 566-576.
  • Gray, E. J., & Smith, D. L. (2005). Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry, 37(3), 395-412.
  • Hardoim, P. R. (2011). Bacterial endophytes of rice: their diversity, characteristics and perspectives. Doctoral Thesis, University of Groningen, Mathematics and Natural Sciences, Netherlands.
  • Hardoim, P. R., van Overbeek, L. S., & van Elsas, J. D. (2008). Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16(10), 463-471.
  • Harman, G. E., Howell, C. R., Vitebo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43-56.
  • Huang, P., de-Bashan, L., Crocker, T., Kloepper, J. W., & Bashan, Y. (2017). Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biology and Fertility of Soils, 53(2), 199-208.
  • Jetiyanon, K., & Kloepper, J. W. (2002). Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control, 24(3), 285-291.
  • Jha, B., Gontia, I., & Hartmann, A. (2012). The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential. Plant and Soil, 356(1-2), 265-277.
  • Jones, J. B., Jones, J. P., Stall, R. E., & Zitter, T. A. (1991). Infectious antifungal. Plant physiology, 108, 17-27.
  • Joseph, A., Igbinosa, O. B., Alori, E. T., Ademiluyi, B. O., & Aluko, A. P. (2017). Effectiveness of Pseudomonas species in the management of tomato early blight pathogen Alternaria solani. African Journal of Microbiology Research, 11(23), 972-976.
  • Khan, N., Mishra, A., & Nautiyal, C. S. (2012). Paenibacillus lentimorbus B-30488r controls early blight disease in tomato by inducing host resistance associated gene expression and inhibiting Alternaria solani. Biological Control, 62(2), 65-74.
  • Latha, P., Anand, T., Ragupathi, N., Prakasam, V., & Samiyappan, R. (2009). Antimicrobial activity of plant extracts and induction of systemic resistance in tomato plants by mixtures of PGPR strains and Zimmu leaf extract against Alternaria solani. Biological Control, 50(2), 85-93.
  • Latif Khan, A., Ahmed Halo, B., Elyassi, A., Ali, S., Al-Hosni, K., Hussain, J., Al-Harrasi, A., & Lee, I. J. (2016). Indole acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solarium lycopersicum. Electronic Journal of Biotechnology, 19(3), 58-64.
  • Leclere, V., Béchet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., Philippe, T., Fre´de´rique, G., Marle`ne, C., & Jacques, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71(8), 4577-4584.
  • Li, H., Ding, X., Wang, C., Ke, H., Wu, Z., WANG, Y., Liu, H., & Guo, J. (2016). Control of tomato yellow leaf curl virüs disease by Enterobacter asburiae BQ9 as a result of priming plant resistance in tomatoes. Turkish Journal of Biology, 40(1), 150-159.
  • Liu, S., Che, Z., & Chen, G. (2016). Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Protection, 84, 56-61.
  • Maji, S., & Chakrabartty, P. K. (2014). Biocontrol of bacterial wilt of tomato caused by'Ralstonia solanacearum'by isolates of plant growth promoting rhizobacteria. Australian Journal of Crop Science, 8(2), 208-214.
  • Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15-19.
  • Momel, T., & Pemezny, K. (2006). 2006 Florida plant disease management guide: Tomato. https://plantpath.ifas.ufl.edu/rsol/RalstoniaPublications_PDF/IFASExt2006_FloridaPDMG-V3-53.pdf. Erişim tarihi: 27 Haziran 2020.
  • Nandhini, S., Sendhilvel, V., & Babu, S. (2012). Endophytic bacteria from tomato and their efficacy against Fusarium oxysporum f. sp. lycopersici, the wilt pathogen. Journal of Biopesticides, 5(2), 178.
  • Neeraj, V. S., & Verma, S. (2010). Alternaria diseases of vegetable crops and new approaches for its control. Asian Journal of Experimental Biological Sciences, 1(3), 681-692.
  • Oberson, A., Frossard, E., Bühlmann, C., Mayer, J., Mäder, P., & Lüscher, A. (2013). Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant and Soil, 371(1-2), 237-255.
  • Olur, G. (2020). Tuzlu ortamda gelişen bitkilerden izole edilen endofit bakterilerin hıyar bitkisinde köşeli yaprak leke hastalığı (Pseudomonas syringae pv. lachrymans), tuz stresi ve bitki gelişimine etkileri. Yüksek Lisans Tezi, Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.
  • Ortíz-Castro, R., Contreras-Cornejo, H. A., Macías-Rodríguez, L., & López-Bucio, J. (2009). The role of microbial signals in plant growth and development. Plant Signaling & Behavior, 4(8), 701-712.
  • Özaktan, H., Çakır, B., Gül, A., Yolageldi, L., Akköprü, A., Fakhraei, D., & Akbaba, M. (2015). Isolation and evaluation of endophytic bacteria against Fusarium oxysporum f. sp. cucumerinum infecting cucumber plants. Austin Journal of Plant Biology, 1(1), 1003.
  • Peralta, I. E., Knapp, S., & Spooner, D. M. (2005). New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Systematic Botany, 30(2), 424-434.
  • Priyanka, T. A., Kotasthane, A. S., Kosharia, A., Kushwah, R., Zaidi, N. W., & Singh, U. S. (2017). Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas. 3 Biotech, 7(1), 7-27.
  • Saharan, B. S., & Nehra, V. (2011). Plant growth promoting rhizobacteria: a critical review. Life Sciences and Medicine Research, 21(1), 30.
  • Saito, S., Michailides, T. J., & Xiao, C. L. (2016). Fungicide resistance profiling in Botrytis cinerea populations from blueberry in California and Washington and their impact on control of gray mold. Plant Disease, 100(10), 2087-2093.
  • Shinde, B. A., Dholakia, B. B., Hussain, K., Aharoni, A., Giri, A. P., & Kamble, A. C. (2018). WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant biotechnology Journal, 16(8), 1502-1513.
  • Song, W., Ma, X., Tan, H., & Zhou, J. (2011). Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiology and Biochemistry, 49(7), 693-700.
  • Soylu, E. M., Soylu, S., Kara, M., & Kurt, Ş. (2020). Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 7-18.
  • Sundaramoorthy, S., & Balabaskar, P. (2012). Consortial effect of endophytic and plant growth promoting rhizobacteria for the management of early blight of tomato incited by Alternaria solani. Journal of Plant Pathology & Microbiology, 3(7), 1-5.
  • Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32-43.
  • Sülü, M. S., Bozkurt, İ. A., & Soylu, S. (2016). Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21(1), 103-111.
  • Townsend, G.K., & Heuberger, J.W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report, 27, 340-343.
  • Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & McInroy, J. A. (2017). Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. PloS One, 12(7), e0181201.
  • Yıldız, M., Gürkan, O., Turgut, C., Kaya, Ü., & Ünal, G. (2005). Tarımsal savaşımda kullanılan pestisitlerin yol açtığı çevre sorunları. http://www.zmo.org.tr/resimler/ekler/dd7a04804967197_ek.pdf. Erişim tarihi: 02 Haziran 2020.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Plant Protection
Authors

Gökhan Boyno 0000-0003-3195-0749

Semra Demir 0000-0002-0177-7677

Ahmet Akköprü 0000-0002-1526-6093

Project Number FYL-2018-7553
Publication Date December 21, 2020
Submission Date July 16, 2020
Acceptance Date August 18, 2020
Published in Issue Year 2020 Volume: 6 Issue: 3

Cite

APA Boyno, G., Demir, S., & Akköprü, A. (2020). Domateste Alternaria solani (Ell. & G. Martin) Sor.’ye Karşı Bazı Endofit Bakterilerin Etkisi. International Journal of Agricultural and Wildlife Sciences, 6(3), 469-477. https://doi.org/10.24180/ijaws.770380

17365       17368       17367        17366      17369     17370