Research Article
BibTex RIS Cite

Tuzluluk Stresinin Kolza Tohumunun (Brassica napus L.) Çimlenme ve Büyüme Özellikleri Üzerindeki Etkilerini Iyileştirmek için Askorbik Asit ile Tohum Hazırlama

Year 2023, Volume: 9 Issue: 2, 239 - 251, 21.08.2023
https://doi.org/10.24180/ijaws.1264452

Abstract

Bu çalışma, farklı tuzluluk seviyeleri altında askorbik asit (AsA) ile tohum hazırlamanın kolza tohumlarının (Brassica napus L.) çimlenme ve fide özellikleri üzerine etkilerini belirlemek amacıyla yapılmıştır. Bu amaçla, çalışmada beş tuzluluk seviyesi (0.20, 5.0, 10.0, 15.0 ve 20.0 dS m-1 NaCl) ve dört priming dozu (kontrol, 0.5, 1.0 ve 2.0 mM askorbik asit) incelenmiştir. Tuz stresi çimlenmeyi ve kökçük uzunluğu (RL), sapçık uzunluğu (PL), kökçük taze ağırlığı (RFW), sapçık taze ağırlığı (PFW), nihai çimlenme yüzdesi (FGP), çimlenme indeksi (GI), ortalama çimlenme süresi (MGT) ve vigor indeksi (SVI) gibi bazı çimlenme ve fide büyüme özelliklerini olumsuz etkilemiştir. AsA ile yapılan priming ise FGP, PFW ve tuz tolerans indeksi (STI) dışındaki tüm parametreleri olumlu etkilemiştir. Tuzluluk stresi ve priming etkileşimine göre en yüksek GI (125.3), MGT (1.63 gün), PFW (0.35 g) ve STI (%139.3) değerleri 5.0 dS m-1 tuzluluk stresi ve 1.0 mM AsA’de elde edilmiştir. Bununla birlikte, RL (10.6 cm) ve SVI (1170.7) için en yüksek değerler kontrol konusu ve 0.5 mM AsA dozunda elde edilirken, PL (1.7 cm) için en yüksek değer kontrol konusu ve 1.0 mM AsA dozunda elde edilmiştir. Düşük dozlarda (0.5 ve 1.0 mM) askorbik asit, çimlenme ve fide büyüme özellikleri üzerinde olumlu bir etkiye sahipken, daha yüksek konsantrasyonlar çimlenme üzerine toksik etki yapmıştır. Bu nedenle kolza tohumlarının 0.5 mM AsA dozu ile ön uygulamaya tabi tutulmasının tuz stresinin tohum çimlenmesi ve fide gelişimi üzerindeki kısıtlayıcı etkisini azaltabileceği sonucuna varılmıştır. Tuz stresi altında AsA uygulamasının kolzanın verim ve gelişme parametrelerine etkileri ile ilgili ileri araştırmaların yapılması önerilmektedir.

References

  • Abdollahi, F., & Jafari, L. (2012). Effect of NaCl and KNO3 priming on seed germination of canola (Brassica napus L.) under salinity conditions. International Journal of Agriculture, Research and Review, 2(5), 573-579.
  • Abdul‐Baki, A. A., & Anderson, J. D. (1970). Viability and Leaching of Sugars from Germinating Barley 1. Crop science, 10(1), 31-34.
  • Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6, 868. https://doi.org/10.3389/fpls.2015.00868.
  • Ajmal Khan, M., & Gulzar, S. (2003). Germination responses of Sporobolus ioclados: a saline desert grass. Journal of Arid Environments, 53(3), 387-394. https://doi.org/10.1006/jare.2002.1045.
  • Ali, L. G., Nulit, R., Ibrahim, M. H., & Yien, C. Y. S. (2020). Enhancement of germination and early seedling growth of rice (Oryza sativa) var. FARO44 by seed priming under normal and drought stressed conditions. Journal of Plant Nutrition, 43(11), 1579-1593. https://doi.org/10.1080/01904167.2020.1739298.
  • Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences, 17(1), 1-8. https://doi.org/10.1016/j.jssas.2015.10.002.
  • Azeem, M., Sultana, R., Mahmood, A., Qasim, M., Siddiqui, Z. S., Mumtaz, S., Javed, T., Umar, M., Adnan, M. Y., & Siddiqui, M. H. (2023). Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor. Journal of Plant Growth Regulation, 1-14. https://doi.org/10.1007/s00344-023-10907-2.
  • Azooz, M. M., Alzahrani, A. M., & Youssef, M. M. (2013). The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean ('Vicia faba'L.). Australian Journal of Crop Science, 7(13), 2091-2100.
  • Bahrabadi, E., Tavakkol Afshari, R., Mahallati, M. N., & Seyyedi, S. M. (2022). Abscisic, gibberellic, and salicylic acids effects on germination indices of corn under salinity and drought stresses. Journal of Crop Improvement, 36(1), 73-89. https://doi.org/10.1080/15427528.2021.1908474.
  • Baig, Z., Khan, N., Sahar, S., Sattar, S., & Zehra, R. (2021). Effects of seed priming with ascorbic acid to mitigate salinity stress on three wheat (Triticum aestivum L.) cultivars. Acta Ecologica Sinica, 41(5), 491-498. https://doi.org/10.1016/j.chnaes.2021.08.010.
  • Batool, M., El-Badri, A. M., Hassan, M. U., Haiyun, Y., Chunyun, W., Zhenkun, Y., Jie, K., Wang, B., & Zhou, G. (2022). Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 42, 21–45. https://doi.org/10.1007/s00344-021-10542-9.
  • Batool, N., Noor, T., Ilyas, N., & Shahzad, A. (2021). Salt stress impacts on seed germination and seedling growth of Brassica napus L. Pure and Applied Biology, 4(3), 398-406. http://dx.doi.org/10.19045/bspab.2015.43016.
  • Bilska, K., Wojciechowska, N., Alipour, S., & Kalemba, E. M. (2019). Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants, 8(12), 645. https://doi.org/10.3390/antiox8120645.
  • Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 71-76. https://doi.org/10.15835/nbha3723299.
  • Ceritoğlu, M., & Erman, M. (2020). Mitigation of salinity stress on chickpea germination by salicylic acid priming. International Journal of Agriculture and Wildlife Science, 6(3), 582-591. https://doi.org/10.24180/ijaws.774969. Chen, X., Zhang, R., Xing, Y., Jiang, B., Li, B., Xu, X., & Zhou, Y. (2021). The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PloS one, 16(1), https://doi.org/10.1371/journal.pone.0245505.
  • Çirka, M., Kaya, A. R., & Eryiğit, T. (2021). Influence of temperature and salinity stress on seed germination and seedling growth of soybean (Glycine max L.). Legume Research, 44(9), 1053-1059. doi: 10.18805/LR-628.
  • El-Hawary, M. M., Hashem, O. S. M., & Hasanuzzaman, M. (2023). Seed Priming and Foliar Application with Ascorbic Acid and Salicylic Acid Mitigate Salt Stress in Wheat. Agronomy, 13(2), 493. https://doi.org/10.3390/agronomy13020493.
  • Fathi, N. O., & Gaafar, A. A. (2015). Growth Performance and Chemical Composition of Corn Seedlings (Zea mays L.) Under Salt Stress and Priming Conditions. Alexandria Science Exchange Journal, 36(3), 226–235. doi: 10.21608/asejaiqjsae.2015.2905.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H., & Van Genuchten, M. T. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231, https://doi.org/10.1016/j.agwat.2020.106022.
  • Flowers, T. J. (1972). The effect of sodium chloride on enzyme activities from four halophyte species of chenopodiaceae. Phytochemistry, 11(6), 1881-1886. https://doi.org/10.1016/S0031-9422(00)90147-X.
  • Fujikura, Y., Kraak, H. L., Basra, A. S., & Karssen, C. M. (1993). Hydropriming, a simple and inexpensive priming method. Seed Science and Technology, 21(3), 639-642.
  • Ghoohestani, A., Gheisary, H., Zahedi, S. M., & Dolatkhahi, A. (2012). Effect of seed priming of tomato with salicylic acid, ascorbic acid and hydrogen peroxideon germination and plantlet growth in saline conditions. International Journal of Agronomy Plant Production, 3, 700-704.
  • Gulzar, S., & Khan, M. A. (2001). Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany, 87(3), 319–324. https://doi.org/10.1006/anbo.2000.1336.
  • Hozayn, M., & Ahmed, A. A. (2019). Effect of magneto-priming by tryptophan and ascorbic acid on germination attributes of barley (Hordeum vulgare, L.) under salinity stress. EurAsian Journal of BioSciences, 13(1), 245-251.
  • Jamil, M., Deog Bae, L., Kwang Yong, J., Ashraf, M., Sheong Chun, L., & Eui Shik, R. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four vegetable species. Journal of Central European Agriculture, 7(2), 273–282. https://doi.org/10.5513/jcea.v7i2.370.
  • Kandil, A. A., Sharief, A. E., & Ahmed, Kh. R. (2015). Performance of some soybean Glycine max (L.) Merrill. cultivars under salinity stress to germination characters. International Journal of Agronomy and Agricultural Research, 6(3), 48-56.
  • Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Science and Technology, 31(3), 715-725. https://doi.org/10.15258/sst.2003.31.3.20.
  • Kiremit, M. S., Hacıkamiloğlu, M. S., Arslan, H., & Kurt, O. (2017). The effects of different irrigation water salinity levels on germination and early seedling development of flax (Linum usitatissimum L.). Anadolu Tarım Bilimleri Dergisi, 32(3), 350-357.
  • Li, Z., Xu, J., Gao, Y., Wang, C., Guo, G., Luo, Y., Huang, Y., Hu, W., Sheteiwy, M. S., Guan, Y., & Hu, J. (2017). The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Frontiers in Plant Science, 8, 1153. https://doi.org/10.3389/fpls.2017.01153.
  • Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177.
  • Mahdavi, B., & Rahimi, A. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. EurAsian Journal of BioSciences, 7, 69-76. http://dx.doi.org/10.5053/ejobios.2013.7.0.9.
  • Mahdy, A. M., Sherif, F. K., Elkhatib, E. A., Fathi, N. O., & Ahmed, M. H. (2020). Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition, 43(12), 1862-1874. https://doi.org/10.1080/01904167.2020.1750647.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9.
  • Molnár, K., Biró-Janka, B., Nyárádi, I. I., Fodorpataki, L., Varga, B. E., Bálint, J., & Duda, M. M. (2020). Effects of Priming with Ascorbic Acid, L-Cystein and Triacontanol on Germination of Rapeseed (Brassica napus L.). Acta Biologica Marisiensis, 3(2), 48-55. https://doi.org/10.2478/abmj-2020-0010.
  • Moreno, C., Seal, C. E., & Papenbrock, J. (2018). Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. Journal of Agronomy and Crop Science, 204(1), 40-48. https://doi.org/10.1111/jac.12242.
  • Niu, J., Chen, Z., Yu, S., & Wang, Q. (2022). Ascorbic acid regulates nitrogen, energy, and gas exchange metabolisms of alfalfa in response to high-nitrate stress. Environmental Science and Pollution Research, 29, 24085–24097. https://doi.org/10.1007/s11356-021-17672-3.
  • Perveen, S., & Hussain, S. A. (2021). Methionine-induced changes in growth, glycinebetaine, ascorbic acid, total soluble proteins and anthocyanin contents of two Zea mays L. varieties under salt stress. Journal of Animal & Plant Sciences, 31(1), 131-142.
  • Sezer, I., Kiremit, M. S., Öztürk, E., Subrata, B. A. G., Osman, H. M., Akay, H., & Arslan, H. (2021). Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels. Scientia Horticulturae, 288, 110376. https://doi.org/10.1016/j.scienta.2021.110376.
  • Shah, N., Anwar, S., Xu, J., Hou, Z., Salah, A., Khan, S., Gong, J., Shang, Z., Qian, L., & Zhang, C. (2018). The response of transgenic Brassica species to salt stress: a review. Biotechnology Letters, 40, 1159-1165. https://doi.org/10.1007/s10529-018-2570-z.
  • Shahzad, B., Fahad, S., Tanveer, M., Saud, S., & Khan, I. A. (2019). Plant responses and tolerance to salt stress. In Approaches for enhancing abiotic stress tolerance in plants (pp. 61-78). CRC Press.
  • Tanur, M. & Yorgancılar, M. (2020). Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi . Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (4) , 3109-3121. https://doi.org/10.21597/jist.757788.
  • Wan, H., Wei, Y., Qian, J., Gao, Y., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., & Shen, J. (2018). Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica, 214(190). https://doi.org/10.1007/s10681-018-2272-6.
  • Wang, Z., Song, L., Wang, C., Guo, M., El-Badri, A. M., Batool, M., Kuai, J., Wang, J., Wang, B., & Zhou, G. (2023). Rapeseed-maize double-cropping with high biomass and high economic benefits is a soil environment-friendly forage production mode in the Yangtze River Basin. European Journal of Agronomy, 142, 126675. https://doi.org/10.1016/j.eja.2022.126675.

Seed Priming with Ascorbic Acid to Ameliorate the Effects of Salinity Stress on Germination and Growth Traits of Rapeseed (Brassica napus L.)

Year 2023, Volume: 9 Issue: 2, 239 - 251, 21.08.2023
https://doi.org/10.24180/ijaws.1264452

Abstract

This study was conducted to determine the effects of seed priming with ascorbic acid (AsA) on germination and seedling characteristics of rapeseed (Brassica napus L.) under different salinity levels. To this end, the study examined five salinity levels (0.20, 5.0, 10.0, 15.0, and 20.0 dS m-1 NaCl) and four priming doses (control, 0.5, 1.0, and 2.0 mM ascorbic acid). Salt stress negatively affected germination and some plant growth traits, such as radicle length (RL), plumule length (PL), radicle fresh weight (RFW) and plumule fresh weight (PFW), finally germination percentage (FGP), germination index (GI), mean germination time (MGT) and seedling vigor index (SVI). On the other hand, priming with AsA positively affected all parameters except FGP, PFW and salt tolerance index (STI). According to the interaction of salinity stress and priming, the highest values for GI (125.3), MGT (1.63 days), PFW (0.35 g), and STI (139.3%) were obtained at 5.0 dS m-1 salinity stress and 1.0 mM AsA dose. However, the highest value was obtained for RL (10.6 cm) and SVI (1170.7) at the control treatment and 0.5 mM AsA dose, whereas the highest value was obtained for PL (1.7 cm) at the control treatment and 1.0 mM AsA dose. Ascorbic acid at low doses (0.5 and 1.0 mM) had a positive effect on seedling germination and growth traits, while higher concentrations had a toxic effect on germination. Thus, it was concluded that priming rapeseed seeds with an AsA dose of 0.5 mM could reduce the restrictive impact of salinity stress on seed germination and seedling improvement. Further studies on the yield and growth parameters of rapeseed under salt stress by AsA application are recommended.

References

  • Abdollahi, F., & Jafari, L. (2012). Effect of NaCl and KNO3 priming on seed germination of canola (Brassica napus L.) under salinity conditions. International Journal of Agriculture, Research and Review, 2(5), 573-579.
  • Abdul‐Baki, A. A., & Anderson, J. D. (1970). Viability and Leaching of Sugars from Germinating Barley 1. Crop science, 10(1), 31-34.
  • Ahmad, P., Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Frontiers in Plant Science, 6, 868. https://doi.org/10.3389/fpls.2015.00868.
  • Ajmal Khan, M., & Gulzar, S. (2003). Germination responses of Sporobolus ioclados: a saline desert grass. Journal of Arid Environments, 53(3), 387-394. https://doi.org/10.1006/jare.2002.1045.
  • Ali, L. G., Nulit, R., Ibrahim, M. H., & Yien, C. Y. S. (2020). Enhancement of germination and early seedling growth of rice (Oryza sativa) var. FARO44 by seed priming under normal and drought stressed conditions. Journal of Plant Nutrition, 43(11), 1579-1593. https://doi.org/10.1080/01904167.2020.1739298.
  • Anaya, F., Fghire, R., Wahbi, S., & Loutfi, K. (2018). Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. Journal of the Saudi Society of Agricultural Sciences, 17(1), 1-8. https://doi.org/10.1016/j.jssas.2015.10.002.
  • Azeem, M., Sultana, R., Mahmood, A., Qasim, M., Siddiqui, Z. S., Mumtaz, S., Javed, T., Umar, M., Adnan, M. Y., & Siddiqui, M. H. (2023). Ascorbic and Salicylic Acids Vitalized Growth, Biochemical Responses, Antioxidant Enzymes, Photosynthetic Efficiency, and Ionic Regulation to Alleviate Salinity Stress in Sorghum bicolor. Journal of Plant Growth Regulation, 1-14. https://doi.org/10.1007/s00344-023-10907-2.
  • Azooz, M. M., Alzahrani, A. M., & Youssef, M. M. (2013). The potential role of seed priming with ascorbic acid and nicotinamide and their interactions to enhance salt tolerance in broad bean ('Vicia faba'L.). Australian Journal of Crop Science, 7(13), 2091-2100.
  • Bahrabadi, E., Tavakkol Afshari, R., Mahallati, M. N., & Seyyedi, S. M. (2022). Abscisic, gibberellic, and salicylic acids effects on germination indices of corn under salinity and drought stresses. Journal of Crop Improvement, 36(1), 73-89. https://doi.org/10.1080/15427528.2021.1908474.
  • Baig, Z., Khan, N., Sahar, S., Sattar, S., & Zehra, R. (2021). Effects of seed priming with ascorbic acid to mitigate salinity stress on three wheat (Triticum aestivum L.) cultivars. Acta Ecologica Sinica, 41(5), 491-498. https://doi.org/10.1016/j.chnaes.2021.08.010.
  • Batool, M., El-Badri, A. M., Hassan, M. U., Haiyun, Y., Chunyun, W., Zhenkun, Y., Jie, K., Wang, B., & Zhou, G. (2022). Drought stress in Brassica napus: effects, tolerance mechanisms, and management strategies. Journal of Plant Growth Regulation, 42, 21–45. https://doi.org/10.1007/s00344-021-10542-9.
  • Batool, N., Noor, T., Ilyas, N., & Shahzad, A. (2021). Salt stress impacts on seed germination and seedling growth of Brassica napus L. Pure and Applied Biology, 4(3), 398-406. http://dx.doi.org/10.19045/bspab.2015.43016.
  • Bilska, K., Wojciechowska, N., Alipour, S., & Kalemba, E. M. (2019). Ascorbic acid—The little-known antioxidant in woody plants. Antioxidants, 8(12), 645. https://doi.org/10.3390/antiox8120645.
  • Bybordi, A., & Tabatabaei, J. (2009). Effect of salinity stress on germination and seedling properties in canola cultivars (Brassica napus L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 71-76. https://doi.org/10.15835/nbha3723299.
  • Ceritoğlu, M., & Erman, M. (2020). Mitigation of salinity stress on chickpea germination by salicylic acid priming. International Journal of Agriculture and Wildlife Science, 6(3), 582-591. https://doi.org/10.24180/ijaws.774969. Chen, X., Zhang, R., Xing, Y., Jiang, B., Li, B., Xu, X., & Zhou, Y. (2021). The efficacy of different seed priming agents for promoting sorghum germination under salt stress. PloS one, 16(1), https://doi.org/10.1371/journal.pone.0245505.
  • Çirka, M., Kaya, A. R., & Eryiğit, T. (2021). Influence of temperature and salinity stress on seed germination and seedling growth of soybean (Glycine max L.). Legume Research, 44(9), 1053-1059. doi: 10.18805/LR-628.
  • El-Hawary, M. M., Hashem, O. S. M., & Hasanuzzaman, M. (2023). Seed Priming and Foliar Application with Ascorbic Acid and Salicylic Acid Mitigate Salt Stress in Wheat. Agronomy, 13(2), 493. https://doi.org/10.3390/agronomy13020493.
  • Fathi, N. O., & Gaafar, A. A. (2015). Growth Performance and Chemical Composition of Corn Seedlings (Zea mays L.) Under Salt Stress and Priming Conditions. Alexandria Science Exchange Journal, 36(3), 226–235. doi: 10.21608/asejaiqjsae.2015.2905.
  • Feghhenabi, F., Hadi, H., Khodaverdiloo, H., & Van Genuchten, M. T. (2020). Seed priming alleviated salinity stress during germination and emergence of wheat (Triticum aestivum L.). Agricultural Water Management, 231, https://doi.org/10.1016/j.agwat.2020.106022.
  • Flowers, T. J. (1972). The effect of sodium chloride on enzyme activities from four halophyte species of chenopodiaceae. Phytochemistry, 11(6), 1881-1886. https://doi.org/10.1016/S0031-9422(00)90147-X.
  • Fujikura, Y., Kraak, H. L., Basra, A. S., & Karssen, C. M. (1993). Hydropriming, a simple and inexpensive priming method. Seed Science and Technology, 21(3), 639-642.
  • Ghoohestani, A., Gheisary, H., Zahedi, S. M., & Dolatkhahi, A. (2012). Effect of seed priming of tomato with salicylic acid, ascorbic acid and hydrogen peroxideon germination and plantlet growth in saline conditions. International Journal of Agronomy Plant Production, 3, 700-704.
  • Gulzar, S., & Khan, M. A. (2001). Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany, 87(3), 319–324. https://doi.org/10.1006/anbo.2000.1336.
  • Hozayn, M., & Ahmed, A. A. (2019). Effect of magneto-priming by tryptophan and ascorbic acid on germination attributes of barley (Hordeum vulgare, L.) under salinity stress. EurAsian Journal of BioSciences, 13(1), 245-251.
  • Jamil, M., Deog Bae, L., Kwang Yong, J., Ashraf, M., Sheong Chun, L., & Eui Shik, R. (2006). Effect of salt (NaCl) stress on germination and early seedling growth of four vegetable species. Journal of Central European Agriculture, 7(2), 273–282. https://doi.org/10.5513/jcea.v7i2.370.
  • Kandil, A. A., Sharief, A. E., & Ahmed, Kh. R. (2015). Performance of some soybean Glycine max (L.) Merrill. cultivars under salinity stress to germination characters. International Journal of Agronomy and Agricultural Research, 6(3), 48-56.
  • Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Science and Technology, 31(3), 715-725. https://doi.org/10.15258/sst.2003.31.3.20.
  • Kiremit, M. S., Hacıkamiloğlu, M. S., Arslan, H., & Kurt, O. (2017). The effects of different irrigation water salinity levels on germination and early seedling development of flax (Linum usitatissimum L.). Anadolu Tarım Bilimleri Dergisi, 32(3), 350-357.
  • Li, Z., Xu, J., Gao, Y., Wang, C., Guo, G., Luo, Y., Huang, Y., Hu, W., Sheteiwy, M. S., Guan, Y., & Hu, J. (2017). The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Frontiers in Plant Science, 8, 1153. https://doi.org/10.3389/fpls.2017.01153.
  • Maguire, J. D. (1962). Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177.
  • Mahdavi, B., & Rahimi, A. (2013). Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. EurAsian Journal of BioSciences, 7, 69-76. http://dx.doi.org/10.5053/ejobios.2013.7.0.9.
  • Mahdy, A. M., Sherif, F. K., Elkhatib, E. A., Fathi, N. O., & Ahmed, M. H. (2020). Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition, 43(12), 1862-1874. https://doi.org/10.1080/01904167.2020.1750647.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410. https://doi.org/10.1016/S1360-1385(02)02312-9.
  • Molnár, K., Biró-Janka, B., Nyárádi, I. I., Fodorpataki, L., Varga, B. E., Bálint, J., & Duda, M. M. (2020). Effects of Priming with Ascorbic Acid, L-Cystein and Triacontanol on Germination of Rapeseed (Brassica napus L.). Acta Biologica Marisiensis, 3(2), 48-55. https://doi.org/10.2478/abmj-2020-0010.
  • Moreno, C., Seal, C. E., & Papenbrock, J. (2018). Seed priming improves germination in saline conditions for Chenopodium quinoa and Amaranthus caudatus. Journal of Agronomy and Crop Science, 204(1), 40-48. https://doi.org/10.1111/jac.12242.
  • Niu, J., Chen, Z., Yu, S., & Wang, Q. (2022). Ascorbic acid regulates nitrogen, energy, and gas exchange metabolisms of alfalfa in response to high-nitrate stress. Environmental Science and Pollution Research, 29, 24085–24097. https://doi.org/10.1007/s11356-021-17672-3.
  • Perveen, S., & Hussain, S. A. (2021). Methionine-induced changes in growth, glycinebetaine, ascorbic acid, total soluble proteins and anthocyanin contents of two Zea mays L. varieties under salt stress. Journal of Animal & Plant Sciences, 31(1), 131-142.
  • Sezer, I., Kiremit, M. S., Öztürk, E., Subrata, B. A. G., Osman, H. M., Akay, H., & Arslan, H. (2021). Role of melatonin in improving leaf mineral content and growth of sweet corn seedlings under different soil salinity levels. Scientia Horticulturae, 288, 110376. https://doi.org/10.1016/j.scienta.2021.110376.
  • Shah, N., Anwar, S., Xu, J., Hou, Z., Salah, A., Khan, S., Gong, J., Shang, Z., Qian, L., & Zhang, C. (2018). The response of transgenic Brassica species to salt stress: a review. Biotechnology Letters, 40, 1159-1165. https://doi.org/10.1007/s10529-018-2570-z.
  • Shahzad, B., Fahad, S., Tanveer, M., Saud, S., & Khan, I. A. (2019). Plant responses and tolerance to salt stress. In Approaches for enhancing abiotic stress tolerance in plants (pp. 61-78). CRC Press.
  • Tanur, M. & Yorgancılar, M. (2020). Tuz Stresine Maruz Bırakılan Kanola (Brassica napus L.)’da Priming Uygulamalarının (Salisilik Asit ve Askorbik Asit) Çimlenme Üzerine Etkisi . Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (4) , 3109-3121. https://doi.org/10.21597/jist.757788.
  • Wan, H., Wei, Y., Qian, J., Gao, Y., Wen, J., Yi, B., Ma, C., Tu, J., Fu, T., & Shen, J. (2018). Association mapping of salt tolerance traits at germination stage of rapeseed (Brassica napus L.). Euphytica, 214(190). https://doi.org/10.1007/s10681-018-2272-6.
  • Wang, Z., Song, L., Wang, C., Guo, M., El-Badri, A. M., Batool, M., Kuai, J., Wang, J., Wang, B., & Zhou, G. (2023). Rapeseed-maize double-cropping with high biomass and high economic benefits is a soil environment-friendly forage production mode in the Yangtze River Basin. European Journal of Agronomy, 142, 126675. https://doi.org/10.1016/j.eja.2022.126675.
There are 43 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Tarla Bitkileri
Authors

Sevda Taşan 0000-0002-4335-4074

Early Pub Date August 14, 2023
Publication Date August 21, 2023
Submission Date March 13, 2023
Acceptance Date June 6, 2023
Published in Issue Year 2023 Volume: 9 Issue: 2

Cite

APA Taşan, S. (2023). Seed Priming with Ascorbic Acid to Ameliorate the Effects of Salinity Stress on Germination and Growth Traits of Rapeseed (Brassica napus L.). International Journal of Agricultural and Wildlife Sciences, 9(2), 239-251. https://doi.org/10.24180/ijaws.1264452

17365       17368       17367        17366      17369     17370