Research Article
BibTex RIS Cite

Tuzluluk Stresinin Topraksız Kültürde Yetiştirilen Domates Bitkisinde Bazı Gelişme ve Fizyolojik Parametreleri ile Makro Bitki Besin Elementi Kapsamına Etkileri

Year 2024, Volume: 10 Issue: 3, 467 - 478
https://doi.org/10.24180/ijaws.1491950

Abstract

Domates (Lycopersicon esculentum L.) yaygın bir şekilde yetiştirilen sebze ürünlerinden biri olup, büyüme ve gelişme dönemi boyunca tuzluluğa orta derecede duyarlı bir bitkidir. Bu çalışmada, topraksız kültürde farklı tuz seviyelerinde yetiştirilen domates bitkisinde gelişmenin, makrobesin kapsamının ve fotosentetik pigmentlerin değişimi incelenmiştir. Denemede 2:1 torf: perlit (v/v) karışımından her saksı için 1500 gram alınıp 3 litrelik saksılara konulmuştur. Her saksıya bir domates fidesi dikilmiştir. Denemede besin solüsyonuna sodyum klorür (NaCl) artan konsantrasyonlarda [0 (T0), 14.4 mM (T1), 44.4 mM (T2) ve 70.4 mM (T3)] ilave edilmiştir. Besin çözeltisinde artan NaCl konsantrasyonu yaprak sayısını ve kök kuru ağırlığını önemli derecede azaltmıştır. Fakat bitki boyuna, gövde çapına, gövde ve yaprak kuru ağırlığına NaCl ilavesinin etkisi önemsiz bulunmuştur. Bununla birlikte, besin çözeltisindeki NaCl konsantrasyonundaki artışın, domates bitkisi yaprağında fotosentetik pigmentler üzerine etkisi anlamlı bulunmuştur. Besin çözeltisine T2 düzeyinde NaCl ilavesi kontrole (T0) göre yaprakta klorofil-b, toplam klorofil ve karotenoid kapsamını önemli derecede arttırmıştır. Besin çözeltisinde NaCl konsantrasyonu arttıkça yaprakta N ve P kapsamı artış gösterirken; K, Ca, Mg ve S kapsamı azalma göstermiştir. Ayrıca besin çözeltine NaCl ilavesi hasat sonu yaprak analizlerine göre yaprakta N, P, K, Ca, Mg ve S noksanlıklarına sebebiyet vermemiştir. Domates bitkilerinin tuzluluk stresine karşı adaptasyonunu arttırmak amacıyla, besin çözeltilerinde kontrollü NaCl uygulamaları ve etkin makro besin yönetimi stratejileri geliştirilmelidir.

Supporting Institution

Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

Proje No: PYO.ZRT.1908.22.015

Thanks

Çalışmanın desteklenmesinden dolayı BAPKOP - BAPSİS birimine teşekkür etmeyi bir borç bilirim.

References

  • Abdelaziz, M. E., & Abdeldaym, E. A. (2019). Effect of grafting and different EC levels of saline irrigation water on growth, yield and fruit quality of tomato (Lycopersicon esculentum) in greenhouse. Plant Archives, 19(2), 3021-3027.
  • Achard, P., Renou, J. P., Berthomé, R., Harberd, N. P., & Genschik, P. (2008). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology, 18(9), 656-660. https://doi.org/10.1016/j.cub.2008.04.034
  • Ahanger, M. A., & Agarwal, R. M. (2017). Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 115, 449-460. https://doi.org/10.1016/j.plaphy.2017.04.017
  • Ahanger, M. A., Mir, R. A., Alyemeni, M. N., & Ahmad, P. (2020). Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiology and Biochemistry, 147, 31-42. https://doi.org/10.1016/j.plaphy.2019.12.007
  • Akınoğlu, G., Korkmaz, A., Akbudak, N., & Horuz, A. (2021). Domates Bitkisinin Mineral Beslenmesi ve Meyve Kalitesi. (Eds. Akbudak, N., & Korkmaz, A.). Akademisyen Kitabevi A.Ş., ISBN: 978-625-8037-64-7. Ankara/Türkiye.
  • Alpaslan, M., Güneş, A., & Inal, A. (1998). Deneme Tekniği. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı: 455, ISBN: 975-482-438-X, p. 437, Ankara.
  • Alzahib, R. H., Migdadi, H. M., Al Ghamdi, A. A., Alwahibi, M. S., Ibrahim, A. A., & Al-Selwey, W. A. (2021). Assessment of morpho-physiological, biochemical and antioxidant responses of tomato landraces to salinity stress. Plants, 10(4), 696. https://doi.org/10.3390/plants10040696
  • Arnon, D. (1949). Copper enzymes in isolated chloroplasts. Plant Physiology, 24(1), 1-12. https://doi.org/10.1104/pp.24.1.1
  • Assimakopoulou, A., Nifakos, K., Salmas, I., & Kalogeropoulos, P. (2015). Growth, ion uptake, and yield responses of three indigenous small-sized greek tomato (Lycopersicon esculentum L.) cultivars and four hybrids of cherry tomato under NaCl salinity stress. Communications in Soil Science and Plant Analysis, 46, 2357-2377. https://doi.org/10.1080/00103624.2015.1081924
  • Bethke, P. C., & Drew, M. C. (1992). Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCI salinity. Plant Physiology, 99(1), 219-26. https://doi.org/10.1104/pp.99.1.219
  • Bremner, J. M., & Mulvaney, C. S. (1982) “Total nitrogen”, In: A.L. Page, R.H. Miller and D.R. Keeny, (Eds.), Methods of Soil Analysis, American Society of Agronomy and Soil Science Society of America, Madison, pp. 1119-1123.
  • Cannella, D., Möllers, K. B., Frigaard, N. U., Jensen, P. E., Bjerrum, M. J., Johansen, K. S., & Felby, C. (2016). Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nature Communication, 7, 11134. https://doi.org/10.1038/ncomms11134
  • Chartzoulakis, K., Loupassaki, M., Bertaki, M., & Androulakis, I. (2002). Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulturae, 96(1–4), 235-247. https://doi.org/10.1016/S0304-4238(02)00067-5
  • Chen, W., Zou, D., Guo, W., Xu, H., Shi, D., & Yang, C. (2009). Effects of salt stress on growth, photosynthesis and solute accumulation in three poplar cultivars. Photosynthetica, 47(3), 415-421. https://doi.org/10.1007/s11099-009-0063-y
  • Costan, A., Stamatakis, A., Chrysargyris, A., Petropoulos, S. A., & Tzortzakis, N. (2020). Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically. Journal of the Science of Food and Agriculture, 100, 732–743. https://doi.org/10.1002/jsfa.10076
  • Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371-379. https://doi.org/10.1016/j.tplants.2014.02.001
  • Fallah, F., Nokhasi, F., & Ghaheri, M. (2017). Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cellular and Molecular Biology (Noisy-le-Grand, France). 63(7), 102-106. https://doi.org/10.14715/cmb/2017.63.7.17
  • FAO (2011). The state of the world’s land and water resources for Food and Agriculture (SOLAW)—managing systems at risk. Abingdon: Food and Agriculture Organization of the United Nations and Earthscan.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology (Stuttg), 6(3), 269-279. https://doi.org/10.1055/s-2004-820867
  • Flowers, T. J., & Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, 78(1-2), 15-24. https://doi.org/10.1016/j.agwat.2005.04.015
  • Giannakoula, A., & Ilias, I. F. (2013). The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mil.). Archives of Biological Sciences, (Beogr), 65(2), 611-620. https://doi.org/10.2298/ABS1302611G
  • Guo, M., Wang, X-S., Guo, H-D., Bai, S-Y., Khan, A., Wang, X-M., Gao, Y-M., & Li, J-S. (2022). Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Frontiers in Plant Science, 13, 949541. https://doi.org/10.3389/fpls.2022.949541
  • Higbie, S. M., Wang, F., Stewart, J. M., Sterling, T. M., Lindemann, W. C., Hughs, E., & Zhang, J. (2010). Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. International Journal of Agronomy, 12, 643475. https://doi.org/10.1155/2010/643475
  • Hochmuth, G. J., Maynard, D., Vavrina, C., Hanlon, E., & Simonne, E. (2012). “Plant tissue analysis and interpretation for vegetable crops in Florida: HS964/EP081 Rev. 10/2012”. EDIS, 2012(10). Gainesville, FL. https://doi.org/10.32473/edis-ep081-2004
  • Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice, 5, 11. https://doi.org/10.1186/1939-8433-5-11
  • Hossain, M. A., Uddin, M. K., Ismail, M. R., & Ashrafuzzama, M. (2012). Responses of glutamine synthetase-glutamate synthase cycle enzymes in tomato leaves under salinity stress. International Journal of Agriculture & Biology, 14(4), 509-515. https://doi.org/10.1016/j.rse.2014.12.008
  • Houborg, R., McCabe, M., Cescatti, A., Gao, F., Schull, M., & Gitelson, A. (2015). Joint leaf chlorophyll content and leaf area index retrieval from landsat data using a regularized model inversion system (REGFLEC). Remote Sensing of Environment, 159, 203-221. https://doi.org/10.1016/j.rse.2014.12.008
  • Javeed, H. M. R., Wang, X., Ali, M., Nawaz, F., Qamar, R., Rehman, A., et al.. (2021). Potential utilization of diluted seawater for the cultivation of some summer vegetable crops: physiological and nutritional implications. Agronomy, 11, 1826. https://doi.org/10.3390/agronomy11091826
  • Jiang, Y., Ding, X., Zhang, D., Deng, Q., Yu, C.-L., Zhou, S., & Hui, D. (2017). Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environmental and Experimental Botany, 133, 70-77. https://doi.org/10.1016/j.envexpbot.2016.10.002
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri, Nobel Yayın Dağıtım Ltd. Şti. Yayınları, Yayın No: 1241; Fen Bilimleri: 63, (I. Basım) Ankara.
  • Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. https://doi.org/10.1016/j.plaphy.2014.03.026
  • Korkmaz, A., Karagöl, A., Akınoğlu, G., & Korkmaz, H. (2018). The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. Journal of Plant Nutrition, 41(1), 123-135. https://doi.org/10.1080/01904167.2017.1381975
  • Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
  • Loudari, A., Benadis, C., Naciri, R., Soulaimani, A., Zeroual, Y., Gharous, M. E., Kalaji, H. M., & Oukarroum, A. (2020). Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. Journal of Plant Interactions, 15(1), 398-405. https://doi.org/10.1080/17429145.2020.1841842
  • Loupassaki, M. H., Chartzoulakis, K. S., Digalaki, N. B., & Androulakis, I. I. (2002). Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. Journal of Plant Nutrition, 25(11), 2457-2482. https://doi.org/10.1081/PLN-120014707
  • Lovelli, S., Scopa, A., Perniola, M., Di Tommaso, T., & Sofo, A. (2012). Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. Journal of Plant Physiology, 169(3), 226-233. https://doi.org/10.1016/j.jplph.2011.09.009
  • Ma, N. L., Che Lah, W. A., & Kadir, A. (2018). Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PloS ONE, 13(2), e0192732. https://doi.org/10.1371/journal.pone.0192732
  • Maeda, K., Johkan, M., Tsukagoshi, S., & Maruo, T. (2020). Effect of salinity on photosynthesis and distribution of photosynthates in the Japanese tomato ‘CF momotaro york’ and the Dutch tomato ‘Endeavour’ with low node-order pinching and a highdensity planting system. The Horticulture Journal, 89(4), 454-459. https://doi.org/10.2503/hortj.UTD-167
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Nebauer, S. G., Sánchez, M., Martínez, L., Lluch, Y., Renau-Morata, B., & Molina, R. V. (2013). Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts. Plant Physiology and Biochemistry, 63, 61-69. https://doi.org/10.1016/j.plaphy.2012.11.006
  • Paranychianakis, N. V., & Chartzoulakis, K. S. (2005). Irrigation of Mediterranean crops with saline water: From physiology to management practices. Agriculture Ecosystems & Environment, 106(2-3), 171-187. https://doi.org/10.1016/j.agee.2004.10.006
  • Parvin, K., Uddin, Ahamed, K., Mahbub Islam, M., & Haque, N. (2016). Modulation of ion uptake in tomato (Lycopersicon esculentum L.) plants with exogenous application of calcium under salt stress condition. Poljoprivreda, 22(2), 40-49. https://doi.org/10.18047/poljo.22.2.7
  • Prazeres, A. R., Carvalho, F., Rivas, J., Patanita, M., & Dôres, J. (2013). Growth and development of tomato plants Lycopersicon esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater. Water Science & Technology, 67(9), 2033-2041. https://doi.org/10.2166/wst.2013.085
  • Rivelli, A. R., Lovelli, S., & Perniola, M. (2002). Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus). Functional Plant Biology, 12(29), 1405-1415. https://doi.org/10.1071/PP01086
  • Rivero, R. M., Mestre, T. C., Mittler, R., Rubio, F., Garcia-Sanchez, F., & Martinez, V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell & Environment, 37(5), 1059-1073. https://doi.org/10.1111/pce.12199
  • Robin, A. H. K., Matthew, C., Uddin, M. J., & Bayazid, K. N. (2016). Salinity induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. Journal of Experimental Botany, 67(12), 3719-3729. https://doi.org/10.1093/jxb/erw064
  • Roșca, M., Mihalache, G., & Stoleru, V. (2023). Tomato responses to salinity stress: From morphological traits to genetic changes. Frontiers in Plant Science, 14, 1118383. https://doi.org/10.3389/fpls.2023.1118383
  • Rothan, C., Diouf, I., & Causse, M. (2019). Trait discovery and editing in tomato. The Plant Journal, 97, 73-90. https://doi.org/10.1111/tpj.14152
  • Sánchez, A., Membrives, J., Valenzuela, J. L., & Guzmán, M. (2012). Effects of saline stress and Ca2+/K+ interaction on biomass and mineral contents of tomato. Acta Horticulturae, 932, 345-350. https://doi.org/10.17660/ActaHortic.2012.932.50
  • Saneoka, H., Ishiguro, S., & Moghaieb, E. (2001). Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in sorghum leaves (Sorghum bicolor). Journal of Plant Physiology, 158, 853-859. https://doi.org/10.1078/0176-1617-00058
  • Shah, S. H., Houborg, R., & McCabe, M. F. (2017). Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7(3), 61. https://doi.org/10.3390/agronomy7030061
  • Shahriaripour, R., Pour, A. T., & Mozaffari, V. (2011). Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Communications in Soil Science and Plant Analysis, 42(2), 144-158. https://doi.org/10.1080/00103624.2011.535065
  • Short, D. C., & Colmer, T. D. (1999). Salt tolerance in the Halophyte Halosarcia pergranulata subsp. pergranulata. Annals of Botany, 83(3), 207-213. https://doi.org/10.1006/anbo.1998.0812
  • Singh, M., Singh, V. P., & Prasad, S. M. (2016). Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiology and Biochemistry, 109, 72-83. https://doi.org/10.1016/j.plaphy.2016.08.021
  • Soltabayeva, A., Ongaltay, A., Omondi, J. O., & Srivastava, S. (2021). Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10, 243. https://doi.org/10.3390/plants10020243
  • Stefanov, M., Yotsova, E., Rashkov, G., Ivanova, K., Markovska, Y., & Apostolova, E. L. (2016). Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiology and Biochemistry, 101, 54-59. https://doi.org/10.1016/j.plaphy.2016.01.017
  • Suwa, R., Nguyen, N. T., Saneoka, H., Moghaieb, R., & Fujita, K. (2006). Effect of salinity stress on photosynthesis and vegetative sink in tobacco plants. Soil Science and Plant Nutrition, 52(2), 243-250. https://doi.org/10.1111/j.1747-0765.2006.00024.x
  • Taheri, S., Sar, S. S., Masoudian, N., Ebadi, M., & Roudi, B. (2020). Molecular and biochemical protective roles of sodium nitroprusside in tomato (Lycopersicon esculentum Mill.) under salt stress. Iranian Journal of Plant Physiology, 11, 3465-3472. https://doi.org/10.30495/ijpp.2020.677270
  • van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005
  • Witham, F. H., Blaydes, D. F., & Devlin, R. M. (1971). Experiments in plant physiology. Van Nostrend Reinhold Company, New York.
  • Xie, Y. J., Xu, S., Han, B., Wu, M. Z., Yuan, X. X., Han, Y., Gu, Q., Xu, D. K., Yang, Q., & Shen, W. B. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. The Plant Journal, 66, 280-229. https://doi.org/10.1111/j.1365-313X.2011.04488.x
  • Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1). https://doi.org/100017. 10.1016/j.xinn.2020.100017

Effects of Salinity Stress on Some Growth and Pysiological Parameters and Macronutrient Content of Tomato Plants Grown in Soilless Culture

Year 2024, Volume: 10 Issue: 3, 467 - 478
https://doi.org/10.24180/ijaws.1491950

Abstract

The tomato (Lycopersicon esculentum L.) is one of the most commonly grown vegetable crops and is moderately sensitive to salinity during the growth and development period. This study investigated the changes in growth, macronutrients and photosynthetic pigments in tomato plants grown in soilless culture under different salinity levels. One thousand five hundred grammes (1500 g) of substrate (2:1 peat: perlite (v/v) mixture) was added to each 3-litre pot. A tomato seedling (Kardelen F1 variety) was planted in each pot. In the experiment, sodium chloride (NaCl) was added to the nutrient solution at increasing concentrations [0 (T0), 14.4 mM (T1), 44.4 mM (T2) and 70.4 mM (T3)]. Increasing the NaCl concentration in the nutrient solution significantly reduced the number of leaves and the dry weight of the roots. However, the effect of NaCl addition on plant height, stem diameter, stem and leaf dry weight was found to be insignificant. Conversely, it was observed that an increase in the NaCl concentration in the nutrient solution had a significant effect on the content of photosynthetic pigments in the leaves of the tomato plants. The addition of NaCl to the nutrient solution at T2 level significantly increased the chlorophyll-b, total chlorophyll and carotenoid content in the leaf compared to the control (T0). With increasing NaCl concentration in the nutrient solution, N and P in the leaf increased, while K, Ca, Mg and S decreased. Furthermore, post-harvest leaf analysis revealed that the addition of NaCl to the nutrient solution did not result in deficiencies of N, P, K, Ca, Mg, and S in the leaves. In order to increase the adaptation of tomato plants to salinity stress, controlled NaCl applications in nutrient solutions and effective macronutrient management strategies should be developed.

Project Number

Proje No: PYO.ZRT.1908.22.015

References

  • Abdelaziz, M. E., & Abdeldaym, E. A. (2019). Effect of grafting and different EC levels of saline irrigation water on growth, yield and fruit quality of tomato (Lycopersicon esculentum) in greenhouse. Plant Archives, 19(2), 3021-3027.
  • Achard, P., Renou, J. P., Berthomé, R., Harberd, N. P., & Genschik, P. (2008). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Current Biology, 18(9), 656-660. https://doi.org/10.1016/j.cub.2008.04.034
  • Ahanger, M. A., & Agarwal, R. M. (2017). Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L.) as influenced by potassium supplementation. Plant Physiology and Biochemistry, 115, 449-460. https://doi.org/10.1016/j.plaphy.2017.04.017
  • Ahanger, M. A., Mir, R. A., Alyemeni, M. N., & Ahmad, P. (2020). Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiology and Biochemistry, 147, 31-42. https://doi.org/10.1016/j.plaphy.2019.12.007
  • Akınoğlu, G., Korkmaz, A., Akbudak, N., & Horuz, A. (2021). Domates Bitkisinin Mineral Beslenmesi ve Meyve Kalitesi. (Eds. Akbudak, N., & Korkmaz, A.). Akademisyen Kitabevi A.Ş., ISBN: 978-625-8037-64-7. Ankara/Türkiye.
  • Alpaslan, M., Güneş, A., & Inal, A. (1998). Deneme Tekniği. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı: 455, ISBN: 975-482-438-X, p. 437, Ankara.
  • Alzahib, R. H., Migdadi, H. M., Al Ghamdi, A. A., Alwahibi, M. S., Ibrahim, A. A., & Al-Selwey, W. A. (2021). Assessment of morpho-physiological, biochemical and antioxidant responses of tomato landraces to salinity stress. Plants, 10(4), 696. https://doi.org/10.3390/plants10040696
  • Arnon, D. (1949). Copper enzymes in isolated chloroplasts. Plant Physiology, 24(1), 1-12. https://doi.org/10.1104/pp.24.1.1
  • Assimakopoulou, A., Nifakos, K., Salmas, I., & Kalogeropoulos, P. (2015). Growth, ion uptake, and yield responses of three indigenous small-sized greek tomato (Lycopersicon esculentum L.) cultivars and four hybrids of cherry tomato under NaCl salinity stress. Communications in Soil Science and Plant Analysis, 46, 2357-2377. https://doi.org/10.1080/00103624.2015.1081924
  • Bethke, P. C., & Drew, M. C. (1992). Stomatal and nonstomatal components to inhibition of photosynthesis in leaves of Capsicum annuum during progressive exposure to NaCI salinity. Plant Physiology, 99(1), 219-26. https://doi.org/10.1104/pp.99.1.219
  • Bremner, J. M., & Mulvaney, C. S. (1982) “Total nitrogen”, In: A.L. Page, R.H. Miller and D.R. Keeny, (Eds.), Methods of Soil Analysis, American Society of Agronomy and Soil Science Society of America, Madison, pp. 1119-1123.
  • Cannella, D., Möllers, K. B., Frigaard, N. U., Jensen, P. E., Bjerrum, M. J., Johansen, K. S., & Felby, C. (2016). Light-driven oxidation of polysaccharides by photosynthetic pigments and a metalloenzyme. Nature Communication, 7, 11134. https://doi.org/10.1038/ncomms11134
  • Chartzoulakis, K., Loupassaki, M., Bertaki, M., & Androulakis, I. (2002). Effects of NaCl salinity on growth, ion content and CO2 assimilation rate of six olive cultivars. Scientia Horticulturae, 96(1–4), 235-247. https://doi.org/10.1016/S0304-4238(02)00067-5
  • Chen, W., Zou, D., Guo, W., Xu, H., Shi, D., & Yang, C. (2009). Effects of salt stress on growth, photosynthesis and solute accumulation in three poplar cultivars. Photosynthetica, 47(3), 415-421. https://doi.org/10.1007/s11099-009-0063-y
  • Costan, A., Stamatakis, A., Chrysargyris, A., Petropoulos, S. A., & Tzortzakis, N. (2020). Interactive effects of salinity and silicon application on Solanum lycopersicum growth, physiology and shelf-life of fruit produced hydroponically. Journal of the Science of Food and Agriculture, 100, 732–743. https://doi.org/10.1002/jsfa.10076
  • Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19(6), 371-379. https://doi.org/10.1016/j.tplants.2014.02.001
  • Fallah, F., Nokhasi, F., & Ghaheri, M. (2017). Effect of salinity on gene expression, morphological and biochemical characteristics of Stevia rebaudiana Bertoni under in vitro conditions. Cellular and Molecular Biology (Noisy-le-Grand, France). 63(7), 102-106. https://doi.org/10.14715/cmb/2017.63.7.17
  • FAO (2011). The state of the world’s land and water resources for Food and Agriculture (SOLAW)—managing systems at risk. Abingdon: Food and Agriculture Organization of the United Nations and Earthscan.
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., & Sharkey, T. D. (2004). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology (Stuttg), 6(3), 269-279. https://doi.org/10.1055/s-2004-820867
  • Flowers, T. J., & Flowers, S. A. (2005). Why does salinity pose such a difficult problem for plant breeders? Agricultural Water Management, 78(1-2), 15-24. https://doi.org/10.1016/j.agwat.2005.04.015
  • Giannakoula, A., & Ilias, I. F. (2013). The effect of water stress and salinity on growth and physiology of tomato (Lycopersicon esculentum Mil.). Archives of Biological Sciences, (Beogr), 65(2), 611-620. https://doi.org/10.2298/ABS1302611G
  • Guo, M., Wang, X-S., Guo, H-D., Bai, S-Y., Khan, A., Wang, X-M., Gao, Y-M., & Li, J-S. (2022). Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Frontiers in Plant Science, 13, 949541. https://doi.org/10.3389/fpls.2022.949541
  • Higbie, S. M., Wang, F., Stewart, J. M., Sterling, T. M., Lindemann, W. C., Hughs, E., & Zhang, J. (2010). Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. International Journal of Agronomy, 12, 643475. https://doi.org/10.1155/2010/643475
  • Hochmuth, G. J., Maynard, D., Vavrina, C., Hanlon, E., & Simonne, E. (2012). “Plant tissue analysis and interpretation for vegetable crops in Florida: HS964/EP081 Rev. 10/2012”. EDIS, 2012(10). Gainesville, FL. https://doi.org/10.32473/edis-ep081-2004
  • Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: an overview with the central focus on rice plants. Rice, 5, 11. https://doi.org/10.1186/1939-8433-5-11
  • Hossain, M. A., Uddin, M. K., Ismail, M. R., & Ashrafuzzama, M. (2012). Responses of glutamine synthetase-glutamate synthase cycle enzymes in tomato leaves under salinity stress. International Journal of Agriculture & Biology, 14(4), 509-515. https://doi.org/10.1016/j.rse.2014.12.008
  • Houborg, R., McCabe, M., Cescatti, A., Gao, F., Schull, M., & Gitelson, A. (2015). Joint leaf chlorophyll content and leaf area index retrieval from landsat data using a regularized model inversion system (REGFLEC). Remote Sensing of Environment, 159, 203-221. https://doi.org/10.1016/j.rse.2014.12.008
  • Javeed, H. M. R., Wang, X., Ali, M., Nawaz, F., Qamar, R., Rehman, A., et al.. (2021). Potential utilization of diluted seawater for the cultivation of some summer vegetable crops: physiological and nutritional implications. Agronomy, 11, 1826. https://doi.org/10.3390/agronomy11091826
  • Jiang, Y., Ding, X., Zhang, D., Deng, Q., Yu, C.-L., Zhou, S., & Hui, D. (2017). Soil salinity increases the tolerance of excessive sulfur fumigation stress in tomato plants. Environmental and Experimental Botany, 133, 70-77. https://doi.org/10.1016/j.envexpbot.2016.10.002
  • Kacar, B., & İnal, A. (2008). Bitki Analizleri, Nobel Yayın Dağıtım Ltd. Şti. Yayınları, Yayın No: 1241; Fen Bilimleri: 63, (I. Basım) Ankara.
  • Khan, M. I. R., Asgher, M., & Khan, N. A. (2014). Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycinebetaine and ethylene in mungbean (Vigna radiata L.). Plant Physiology and Biochemistry, 80, 67-74. https://doi.org/10.1016/j.plaphy.2014.03.026
  • Korkmaz, A., Karagöl, A., Akınoğlu, G., & Korkmaz, H. (2018). The effects of silicon on nutrient levels and yields of tomatoes under saline stress in artificial medium culture. Journal of Plant Nutrition, 41(1), 123-135. https://doi.org/10.1080/01904167.2017.1381975
  • Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495(1), 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043
  • Loudari, A., Benadis, C., Naciri, R., Soulaimani, A., Zeroual, Y., Gharous, M. E., Kalaji, H. M., & Oukarroum, A. (2020). Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. Journal of Plant Interactions, 15(1), 398-405. https://doi.org/10.1080/17429145.2020.1841842
  • Loupassaki, M. H., Chartzoulakis, K. S., Digalaki, N. B., & Androulakis, I. I. (2002). Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars. Journal of Plant Nutrition, 25(11), 2457-2482. https://doi.org/10.1081/PLN-120014707
  • Lovelli, S., Scopa, A., Perniola, M., Di Tommaso, T., & Sofo, A. (2012). Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants. Journal of Plant Physiology, 169(3), 226-233. https://doi.org/10.1016/j.jplph.2011.09.009
  • Ma, N. L., Che Lah, W. A., & Kadir, A. (2018). Susceptibility and tolerance of rice crop to salt threat: physiological and metabolic inspections. PloS ONE, 13(2), e0192732. https://doi.org/10.1371/journal.pone.0192732
  • Maeda, K., Johkan, M., Tsukagoshi, S., & Maruo, T. (2020). Effect of salinity on photosynthesis and distribution of photosynthates in the Japanese tomato ‘CF momotaro york’ and the Dutch tomato ‘Endeavour’ with low node-order pinching and a highdensity planting system. The Horticulture Journal, 89(4), 454-459. https://doi.org/10.2503/hortj.UTD-167
  • Miller, G., Suzuki, N., Ciftci-Yilmaz, S., & Mittler, R. (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment, 33, 453-467. https://doi.org/10.1111/j.1365-3040.2009.02041.x
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Nebauer, S. G., Sánchez, M., Martínez, L., Lluch, Y., Renau-Morata, B., & Molina, R. V. (2013). Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts. Plant Physiology and Biochemistry, 63, 61-69. https://doi.org/10.1016/j.plaphy.2012.11.006
  • Paranychianakis, N. V., & Chartzoulakis, K. S. (2005). Irrigation of Mediterranean crops with saline water: From physiology to management practices. Agriculture Ecosystems & Environment, 106(2-3), 171-187. https://doi.org/10.1016/j.agee.2004.10.006
  • Parvin, K., Uddin, Ahamed, K., Mahbub Islam, M., & Haque, N. (2016). Modulation of ion uptake in tomato (Lycopersicon esculentum L.) plants with exogenous application of calcium under salt stress condition. Poljoprivreda, 22(2), 40-49. https://doi.org/10.18047/poljo.22.2.7
  • Prazeres, A. R., Carvalho, F., Rivas, J., Patanita, M., & Dôres, J. (2013). Growth and development of tomato plants Lycopersicon esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater. Water Science & Technology, 67(9), 2033-2041. https://doi.org/10.2166/wst.2013.085
  • Rivelli, A. R., Lovelli, S., & Perniola, M. (2002). Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus). Functional Plant Biology, 12(29), 1405-1415. https://doi.org/10.1071/PP01086
  • Rivero, R. M., Mestre, T. C., Mittler, R., Rubio, F., Garcia-Sanchez, F., & Martinez, V. (2014). The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant, Cell & Environment, 37(5), 1059-1073. https://doi.org/10.1111/pce.12199
  • Robin, A. H. K., Matthew, C., Uddin, M. J., & Bayazid, K. N. (2016). Salinity induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. Journal of Experimental Botany, 67(12), 3719-3729. https://doi.org/10.1093/jxb/erw064
  • Roșca, M., Mihalache, G., & Stoleru, V. (2023). Tomato responses to salinity stress: From morphological traits to genetic changes. Frontiers in Plant Science, 14, 1118383. https://doi.org/10.3389/fpls.2023.1118383
  • Rothan, C., Diouf, I., & Causse, M. (2019). Trait discovery and editing in tomato. The Plant Journal, 97, 73-90. https://doi.org/10.1111/tpj.14152
  • Sánchez, A., Membrives, J., Valenzuela, J. L., & Guzmán, M. (2012). Effects of saline stress and Ca2+/K+ interaction on biomass and mineral contents of tomato. Acta Horticulturae, 932, 345-350. https://doi.org/10.17660/ActaHortic.2012.932.50
  • Saneoka, H., Ishiguro, S., & Moghaieb, E. (2001). Effect of salinity and abscisic acid on accumulation of glycinebetaine and betaine aldehyde dehydrogenase mRNA in sorghum leaves (Sorghum bicolor). Journal of Plant Physiology, 158, 853-859. https://doi.org/10.1078/0176-1617-00058
  • Shah, S. H., Houborg, R., & McCabe, M. F. (2017). Response of chlorophyll, carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy, 7(3), 61. https://doi.org/10.3390/agronomy7030061
  • Shahriaripour, R., Pour, A. T., & Mozaffari, V. (2011). Effects of salinity and soil phosphorus application on growth and chemical composition of pistachio seedlings. Communications in Soil Science and Plant Analysis, 42(2), 144-158. https://doi.org/10.1080/00103624.2011.535065
  • Short, D. C., & Colmer, T. D. (1999). Salt tolerance in the Halophyte Halosarcia pergranulata subsp. pergranulata. Annals of Botany, 83(3), 207-213. https://doi.org/10.1006/anbo.1998.0812
  • Singh, M., Singh, V. P., & Prasad, S. M. (2016). Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiology and Biochemistry, 109, 72-83. https://doi.org/10.1016/j.plaphy.2016.08.021
  • Soltabayeva, A., Ongaltay, A., Omondi, J. O., & Srivastava, S. (2021). Morphological, physiological and molecular markers for salt-stressed plants. Plants, 10, 243. https://doi.org/10.3390/plants10020243
  • Stefanov, M., Yotsova, E., Rashkov, G., Ivanova, K., Markovska, Y., & Apostolova, E. L. (2016). Effects of salinity on the photosynthetic apparatus of two Paulownia lines. Plant Physiology and Biochemistry, 101, 54-59. https://doi.org/10.1016/j.plaphy.2016.01.017
  • Suwa, R., Nguyen, N. T., Saneoka, H., Moghaieb, R., & Fujita, K. (2006). Effect of salinity stress on photosynthesis and vegetative sink in tobacco plants. Soil Science and Plant Nutrition, 52(2), 243-250. https://doi.org/10.1111/j.1747-0765.2006.00024.x
  • Taheri, S., Sar, S. S., Masoudian, N., Ebadi, M., & Roudi, B. (2020). Molecular and biochemical protective roles of sodium nitroprusside in tomato (Lycopersicon esculentum Mill.) under salt stress. Iranian Journal of Plant Physiology, 11, 3465-3472. https://doi.org/10.30495/ijpp.2020.677270
  • van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71, 403-433. https://doi.org/10.1146/annurev-arplant-050718-100005
  • Witham, F. H., Blaydes, D. F., & Devlin, R. M. (1971). Experiments in plant physiology. Van Nostrend Reinhold Company, New York.
  • Xie, Y. J., Xu, S., Han, B., Wu, M. Z., Yuan, X. X., Han, Y., Gu, Q., Xu, D. K., Yang, Q., & Shen, W. B. (2011). Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. The Plant Journal, 66, 280-229. https://doi.org/10.1111/j.1365-313X.2011.04488.x
  • Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1). https://doi.org/100017. 10.1016/j.xinn.2020.100017
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Plant Nutrition and Soil Fertility
Journal Section Toprak Bilimi ve Bitki Besleme
Authors

Güney Akınoğlu 0000-0003-4624-2876

Ahmet Korkmaz 0000-0001-5595-0618

Salih Demirkaya 0000-0002-7374-0160

Songül Rakıcıoğlu 0000-0002-8013-6439

Zerrin Civelek 0000-0002-8303-9407

Project Number Proje No: PYO.ZRT.1908.22.015
Early Pub Date December 21, 2024
Publication Date
Submission Date May 31, 2024
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 10 Issue: 3

Cite

APA Akınoğlu, G., Korkmaz, A., Demirkaya, S., Rakıcıoğlu, S., et al. (2024). Tuzluluk Stresinin Topraksız Kültürde Yetiştirilen Domates Bitkisinde Bazı Gelişme ve Fizyolojik Parametreleri ile Makro Bitki Besin Elementi Kapsamına Etkileri. International Journal of Agricultural and Wildlife Sciences, 10(3), 467-478. https://doi.org/10.24180/ijaws.1491950

17365       17368       17367        17366      17369     17370