Research Article
BibTex RIS Cite

Paclobutrazol Dozlarının Kanola (Brassica napus L.) Fidelerinin Gelişimi Üzerindeki Fizyolojik ve Morfolojik Etkileri

Year 2025, Volume: 11 Issue: 2, 235 - 241, 29.08.2025
https://doi.org/10.24180/ijaws.1623180

Abstract

Bu çalışmada, paclobutrazolün (PBZ) farklı dozlarının kolza tohumunun (Brassica napus L.) erken fide gelişimi üzerindeki etkilerini bazı fizyolojik ve morfolojik parametreler ölçülerek incelenmiştir. Gibberellin biyosentezini inhibe etme yeteneğiyle bilinen bir bitki büyüme düzenleyicisi olan PBZ’ün, kolza fidelerinin büyüme parametreleri, klorofil içeriği, bağıl su içeriği (RWC), yaprak alanı, sürgün ve kök özellikleri, elektrolit sızıntısı ve yaprak özütü özellikleri (pH ve elektriksel iletkenlik) üzerindeki etkisini değerlendirmek için beş farklı konsantrasyonda (0, 150, 300, 450, 900 ppm) bitkinin yaprak ve gövde yüzeylerine püskürtülerek uygulanmıştır. Sonuçlar, PBZ'nin kolza tohumu fideleri üzerinde doza bağlı farklı etkilerinin olduğunu, yüksek dozlarda yaprak alanı ve hacminde önemli azalmalara neden olduğunu göstermiştir. PBZ klorofil içeriğini önemli ölçüde değiştirmezken, RWC'de 300 ppm'de su tutulumunun iyileştiği görülmüştür. Ayrıca, 150–300 ppm PBZ dozlarının daha düşük elektrolit sızıntısı ile stabil bir membrana neden olduğu belirlendi. Daha yüksek dozlar ise yaprak kalınlaşması ve deformasyonu gibi morfolojik anormalliklere yol açtı. 300 ppm ve alt dozları uygun dozlar olsa da fide döneminde PBZ uygulamasının bitki gelişimi açısından önemli bir katkısı görülmemiştir. Ancak, sonraki büyüme dönemlerindeki uygulamaların kuraklık ve sıcaklık stresi üzerine etkileri araştırmalıdır.

Project Number

2023-TYL-6.12.57-0023

References

  • Ali, H., Mahmood, I., Qadir, G., Raja, N. I., Abasi, F., Ahmed, M., & Proćków, J. (2024). Synergistic effect of paclobutrazol and silver nanoparticles (AgNPs) control the pod shattering in canola (Brassica napus L.) via physiological interferences: A mechanistic overview. Acta Physiologiae Plantarum, 46(4), 42. https://doi.org/10.1007/s11738-024-03664-6
  • Banoo, M., Sinha, B. K., Chand, G., Sinha, R., Gupta, M., Sharma, M., Dogra, S., Kouser F., Kour, M., Sharma, D. (2022). Response of growth retardants paclobutrazol and cycocel on morphological characteristics in Indian mustard (Brassica juncea L.) genotypes under rainfed condition. The Pharma Innovation Journal, 11(12): 715-719.
  • Berova, M., & Zlatev, Z. (2000). Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regulation, 30, 117-123. https://doi.org/10.1023/A:1006300326975
  • Hajihashemi, S., & Ehsanpour, A. (2013). Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia, 68(3), 414-420. https://doi.org/10.2478/s11756-013-0165-7
  • Jungklang, J., Saengnil, K., & Uthaibutra, J. (2017). Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi Journal of Biological Sciences, 24(7), 1505-1512. https://doi.org/10.1016/j.sjbs.2015.09.017
  • Jyothsna, J., Shanthi, A., & Nadaradjan, S. (2022). Paclobutrazol increases pod yield of okra by altering plant architecture: A case of a growth retardant that outperformed the growth promoters. The Pharma Innovation Journal, 11, 1568-1576. https://www.thepharmajournal.com/archives/2022/vol11issue3/PartU/11-3-74-849.pdf
  • Kirkegaard, J. A., Lilley, J. M., Berry, P. M., & Rondanini, D. P. (2021). Canola. In V. O. Sadras, & D. E. Calderini (Eds.), Crop Physiology Case Histories for Major Crops (pp. 518-549). Academic Press. https://doi.org/10.1016/B978-0-12-819194-1.00017-7
  • Kuai, J., Yang, Y., Sun, Y., Zhou, G., Zuo, Q., Wu, J., & Ling, X. (2015). Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Research, 180, 10-20. https://doi.org/10.1016/j.fcr.2015.05.004
  • Li, J., Xu, P., Zhang, B., Song, Y., Wen, S., Bai, Y., Ji, L., Lai, Y., He, G., & Zhang, D. (2023). Paclobutrazol Promotes Root Development of Difficult-to-Root Plants by Coordinating Auxin and Abscisic Acid Signaling Pathways in Phoebe bournei. International Journal of Molecular Sciences, 24(4):3753. https://doi.org/10.3390/ijms24043753
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843–1852. https://doi.org/10.1093/jxb/46.12.1843
  • Maheshwari, C., Garg, N. K., Hasan, M., V, P., Meena, N. L., Singh, A., & Tyagi, A. (2022). Insight of PBZ mediated drought amelioration in crop plants. Frontiers in Plant Science, 13, 1008993. https://doi.org/10.3389/fpls.2022.1008993
  • Matsoukis, A., Gasparatos, D., & Chronopoulou-Sereli, A. (2014). Environmental conditions and drenched-applied paclobutrazol effects on lantana specific leaf area and N, P, K, and Mg content. Chilean Journal of Agricultural Research, 74(1), 117-122. http://dx.doi.org/10.4067/S0718-58392014000100018
  • Mullan, D., & Pietragalla, J. (2012). Leaf relative water content. In A. Pask (Eds.), Physiological Breeding II: A Field Guide to Wheat Phenotyping, Chapter 5, (pp. 25-27). CIMMYT.
  • Pal, S., Zhao, J., Khan, A., Yadav, N. S., Batushansky, A., Barak, S., Rewald, B.,Fait, A.,Lazarovitch, N., & Rachmilevitch, S. (2016). Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports, 6(1), 39321. https://doi.org/10.1038/srep39321
  • Raboanatahiry, N., Li, H., Yu, L., & Li, M. (2021). Rapeseed (Brassica napus): Processing, utilization, and genetic improvement. Agronomy, 11(9), 1776. https://doi.org/10.3390/agronomy11091776
  • Sharma, M., Gupta, I., Tisarum, R., Batish, D. R., Cha-um, S., & Singh, H. P. (2023). Paclobutrazol improves the chlorophyll content and antioxidant activities of red rice in response to alkaline stress. Journal of Soil Science and Plant Nutrition, 23(4), 6429-6444. https://doi.org/10.1007/s42729-023-01497-9
  • Sofy, M. R., Elhindi, K. M., Farouk, S., & Alotaibi, M. A. (2020). Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants, 9(9), 1197. https://doi.org/10.3390/plants9091197
  • Somasundaram, R. (2022). Alleviating NaCl Stress by Improving Growth and Yield in Arachis hypogaea L. by Exogenous Application of Brassinolide and Paclobutrazol. Indian Journal of Natural Sciences 13 (73).
  • Tesfahun, W., & Menzir, A. (2018). Effect of rates and time of paclobutrazol application on growth, lodging, and yield and yield components of tef [Eragrostis tef (Zucc.) Trotter] in Ada district, East Shewa, Ethiopia. Journal of Biology, Agriculture and Healthcare, 8(3), 104-117. https://www.iiste.org/Journals/index.php/JBAH/article/download/41082/42238
  • United States Department of Agriculture. (2024). Production-Rapeseed. https://fas.usda.gov/data/production/commodity/2226000 [Access date: October 24, 2024].
  • Wu, W., Shah, F., & Ma, B. L. (2022). Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop and Environment, 1(2), 133-144. https://doi.org/10.1016/j.crope.2022.05.005
  • Xia, X., Tang, Y., Wei, M., & Zhao, D. (2018). Effect of paclobutrazol application on plant photosynthetic performance and leaf greenness of herbaceous peony. Horticulturae, 4(1), 5. https://doi.org/10.3390/horticulturae4010005

Physiological and Morphological Effects of Paclobutrazol Doses on Early Development of Canola (Brassica napus L.) Seedlings

Year 2025, Volume: 11 Issue: 2, 235 - 241, 29.08.2025
https://doi.org/10.24180/ijaws.1623180

Abstract

In this study, the effects of different doses of paclobutrazol (PBZ) on early seedling development of rapeseed (Brassica napus L.) were investigated by measuring some physiological and morphological parameters. PBZ, a plant growth regulator known for its ability to inhibit gibberellin biosynthesis, was applied by spraying on the leaf and stem surfaces of plants at five different concentrations (0, 150, 300, 450, 900 ppm) to evaluate the effects on growth parameters, chlorophyll content, relative water content (RWC), leaf area, shoot and root properties, electrolyte leakage and leaf extract properties (pH and electrical conductivity) of rapeseed seedlings. The results showed that PBZ had different dose-dependent effects on rapeseed seedlings, causing significant reductions in leaf area and volume at high doses. Although PBZ had no significant effect on chlorophyll content, an improvement in water retention (RWC) was observed at 300 ppm. Furthermore, PBZ doses of 150–300 ppm enhanced membrane stability, as indicated by reduced electrolyte leakage. In contrast, higher doses caused morphological abnormalities such as leaf thickening and deformation. While doses of 300 ppm and below were found to be appropriate, PBZ application during the seedling stage had minimal impact on overall plant development.However, the effects of PBZ applications during later growth stages on drought and heat stress should be further investigated.

Supporting Institution

BAIBU Scientific Research Projects Coordination Unit

Project Number

2023-TYL-6.12.57-0023

Thanks

This study was supported by the BAIBU Scientific Research Projects Coordination Unit within the scope of the Project No. 2023-TYL-6.12.57-0023.

References

  • Ali, H., Mahmood, I., Qadir, G., Raja, N. I., Abasi, F., Ahmed, M., & Proćków, J. (2024). Synergistic effect of paclobutrazol and silver nanoparticles (AgNPs) control the pod shattering in canola (Brassica napus L.) via physiological interferences: A mechanistic overview. Acta Physiologiae Plantarum, 46(4), 42. https://doi.org/10.1007/s11738-024-03664-6
  • Banoo, M., Sinha, B. K., Chand, G., Sinha, R., Gupta, M., Sharma, M., Dogra, S., Kouser F., Kour, M., Sharma, D. (2022). Response of growth retardants paclobutrazol and cycocel on morphological characteristics in Indian mustard (Brassica juncea L.) genotypes under rainfed condition. The Pharma Innovation Journal, 11(12): 715-719.
  • Berova, M., & Zlatev, Z. (2000). Physiological response and yield of paclobutrazol treated tomato plants (Lycopersicon esculentum Mill.). Plant Growth Regulation, 30, 117-123. https://doi.org/10.1023/A:1006300326975
  • Hajihashemi, S., & Ehsanpour, A. (2013). Influence of exogenously applied paclobutrazol on some physiological traits and growth of Stevia rebaudiana under in vitro drought stress. Biologia, 68(3), 414-420. https://doi.org/10.2478/s11756-013-0165-7
  • Jungklang, J., Saengnil, K., & Uthaibutra, J. (2017). Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi Journal of Biological Sciences, 24(7), 1505-1512. https://doi.org/10.1016/j.sjbs.2015.09.017
  • Jyothsna, J., Shanthi, A., & Nadaradjan, S. (2022). Paclobutrazol increases pod yield of okra by altering plant architecture: A case of a growth retardant that outperformed the growth promoters. The Pharma Innovation Journal, 11, 1568-1576. https://www.thepharmajournal.com/archives/2022/vol11issue3/PartU/11-3-74-849.pdf
  • Kirkegaard, J. A., Lilley, J. M., Berry, P. M., & Rondanini, D. P. (2021). Canola. In V. O. Sadras, & D. E. Calderini (Eds.), Crop Physiology Case Histories for Major Crops (pp. 518-549). Academic Press. https://doi.org/10.1016/B978-0-12-819194-1.00017-7
  • Kuai, J., Yang, Y., Sun, Y., Zhou, G., Zuo, Q., Wu, J., & Ling, X. (2015). Paclobutrazol increases canola seed yield by enhancing lodging and pod shatter resistance in Brassica napus L. Field Crops Research, 180, 10-20. https://doi.org/10.1016/j.fcr.2015.05.004
  • Li, J., Xu, P., Zhang, B., Song, Y., Wen, S., Bai, Y., Ji, L., Lai, Y., He, G., & Zhang, D. (2023). Paclobutrazol Promotes Root Development of Difficult-to-Root Plants by Coordinating Auxin and Abscisic Acid Signaling Pathways in Phoebe bournei. International Journal of Molecular Sciences, 24(4):3753. https://doi.org/10.3390/ijms24043753
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843–1852. https://doi.org/10.1093/jxb/46.12.1843
  • Maheshwari, C., Garg, N. K., Hasan, M., V, P., Meena, N. L., Singh, A., & Tyagi, A. (2022). Insight of PBZ mediated drought amelioration in crop plants. Frontiers in Plant Science, 13, 1008993. https://doi.org/10.3389/fpls.2022.1008993
  • Matsoukis, A., Gasparatos, D., & Chronopoulou-Sereli, A. (2014). Environmental conditions and drenched-applied paclobutrazol effects on lantana specific leaf area and N, P, K, and Mg content. Chilean Journal of Agricultural Research, 74(1), 117-122. http://dx.doi.org/10.4067/S0718-58392014000100018
  • Mullan, D., & Pietragalla, J. (2012). Leaf relative water content. In A. Pask (Eds.), Physiological Breeding II: A Field Guide to Wheat Phenotyping, Chapter 5, (pp. 25-27). CIMMYT.
  • Pal, S., Zhao, J., Khan, A., Yadav, N. S., Batushansky, A., Barak, S., Rewald, B.,Fait, A.,Lazarovitch, N., & Rachmilevitch, S. (2016). Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports, 6(1), 39321. https://doi.org/10.1038/srep39321
  • Raboanatahiry, N., Li, H., Yu, L., & Li, M. (2021). Rapeseed (Brassica napus): Processing, utilization, and genetic improvement. Agronomy, 11(9), 1776. https://doi.org/10.3390/agronomy11091776
  • Sharma, M., Gupta, I., Tisarum, R., Batish, D. R., Cha-um, S., & Singh, H. P. (2023). Paclobutrazol improves the chlorophyll content and antioxidant activities of red rice in response to alkaline stress. Journal of Soil Science and Plant Nutrition, 23(4), 6429-6444. https://doi.org/10.1007/s42729-023-01497-9
  • Sofy, M. R., Elhindi, K. M., Farouk, S., & Alotaibi, M. A. (2020). Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants, 9(9), 1197. https://doi.org/10.3390/plants9091197
  • Somasundaram, R. (2022). Alleviating NaCl Stress by Improving Growth and Yield in Arachis hypogaea L. by Exogenous Application of Brassinolide and Paclobutrazol. Indian Journal of Natural Sciences 13 (73).
  • Tesfahun, W., & Menzir, A. (2018). Effect of rates and time of paclobutrazol application on growth, lodging, and yield and yield components of tef [Eragrostis tef (Zucc.) Trotter] in Ada district, East Shewa, Ethiopia. Journal of Biology, Agriculture and Healthcare, 8(3), 104-117. https://www.iiste.org/Journals/index.php/JBAH/article/download/41082/42238
  • United States Department of Agriculture. (2024). Production-Rapeseed. https://fas.usda.gov/data/production/commodity/2226000 [Access date: October 24, 2024].
  • Wu, W., Shah, F., & Ma, B. L. (2022). Understanding of crop lodging and agronomic strategies to improve the resilience of rapeseed production to climate change. Crop and Environment, 1(2), 133-144. https://doi.org/10.1016/j.crope.2022.05.005
  • Xia, X., Tang, Y., Wei, M., & Zhao, D. (2018). Effect of paclobutrazol application on plant photosynthetic performance and leaf greenness of herbaceous peony. Horticulturae, 4(1), 5. https://doi.org/10.3390/horticulturae4010005
There are 22 citations in total.

Details

Primary Language English
Subjects Industrial Crops
Journal Section Tarla Bitkileri
Authors

İlhan Subaşı 0000-0001-7237-937X

Project Number 2023-TYL-6.12.57-0023
Early Pub Date August 28, 2025
Publication Date August 29, 2025
Submission Date January 19, 2025
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Subaşı, İ. (2025). Physiological and Morphological Effects of Paclobutrazol Doses on Early Development of Canola (Brassica napus L.) Seedlings. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 11(2), 235-241. https://doi.org/10.24180/ijaws.1623180

17365       17368       17367        17366      17369     17370