Research Article
BibTex RIS Cite

Valorization of Citrus Pulp Wastes on Improving the Silage Quality of Alfalfa (Medicago sativa L.): Effects on Chemical Composition, Fermentation, Gas Production, and Aerobic Stability Properties

Year 2025, Volume: 11 Issue: 2, 242 - 255, 29.08.2025
https://doi.org/10.24180/ijaws.1665278

Abstract

This study was carried out to evaluate the effect of the pulps obtained from citrus on the quality properties of alfalfa (Medicago sativa L.) silage, which has low water-soluble carbohydrates (WSC) and high protein content. The alfalfa was harvested in the pre-blooming period and chopped into 1-3 cm lengths, added 0%, 5% and 10% fresh orange, tangerine, grapefruit and lemon pulps, then siled in vacuum bags for 90 days with 3 replications. At the end of the ensiling period, chemical analyses, gas production (GP), and other calculations were performed. Citrus pulp addition increased the dry matter (DM), crude ash (CA), crude protein (CP), and Flieg Score (FS) of the silages, and reduced the pH, net GP, and methane (CH4). The addition of 10% tangerine pulp increased the FS of silages more than 50%. While the control group silages were graded "low", the addition of 10% tangerine pulp increased the quality grades of the silages to "good". With the addition of 5% grapefruit pulp, a 27% decrease in the CH4 on a per-mL basis of the silages was determined. When silages were compared with the control group, only the silages with %5 tangerine pulp addition had anti-methanogenic properties due to their percentage. With the addition of citrus pulp, excessive degradation of proteins occurring in alfalfa silage was prevented. Silage quality and environmental pollution can be addressed to some extent by using citrus pulp waste to ensile alfalfa, which improves both the nutritional and fermentation characteristics of the silage.

References

  • Albrecht, K. A., & Muck, R. E. (1991). Proteolysis in ensiled forage legumes that vary in tannin concentration Crop Science, 31(2), 464-469. https://doi.org/10.2135/cropsci1991.0011183x003100020048x
  • AOAC. (1990). Official methods of analysis (15th edn). Association of Official Analytical Chemists.
  • Atalay, A. I. (2009). Investigation on the use of molasses and Laurus nobilis mixture in alfalfa silage and the effect on the silage quality [MSc thesis, University of Kahramanmaraş Sutcu Imam]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Avci, M., Hatipoglu, R., Çinar, S., & Kiliçalp, N. (2018). Assessment of yield and quality characteristics of alfalfa (Medicago sativa L.) cultivars with different fall dormancy rating. Legume Research, 41(3), 369-373. https://doi.org/10.18805/lr-364
  • Bakshi, M. P. S., & Wadhwa, M. (2013). Nutritional evaluation of cannery and fruit wastes as livestock feed. Indian Journal of Animal Sciences, 83(11), 1198-1202.
  • Bampidis, V. A., & Robinson, P. H. (2006). Citrus by-products as ruminant feeds: A review. Animal Feed Science and Technology, 128(3-4), 175-217. https://doi.org/10.1016/j.anifeedsci.2005.12.002
  • Başar, Y., & Atalay, A. I. (2020). The use of citrus pulps as an alternative feed sources in ruminant feeding and its methane production capacities. Journal of the Institute of Science and Technology, 10(2), 1449-1455. https://doi.org/10.21597/jist.725292
  • Besharati, M., Palangi, V., Ghozalpour, V., Nemati, Z., & Ayaşan, T. (2021). Essential oil and apple pomace affect fermentation and aerobic stability of alfalfa silage. South African Journal of Animal Science, 51(3), 371-377. https://doi.org/10.4314/sajas.v51i3.11
  • Besharati, M., Shafipour, N., Abdi, E., & Nemati, Z. (2017). Effects of supplementation alfalfa silage with molasses, orange pulp and Lactobacillus buchneri on in vitro dry matter digestibility and gas production. Journal of Bioscience and Biotechnology, 6(1), 43-47.
  • Beyzi, S., Ulger, I., Kaliber, M., & Konca, Y. (2018). Determination of chemical, nutritional and fermentation properties of citrus pulp silages. Turkish Journal of Agriculture-Food Science and Technology, 6(12), 1833-1837. https://doi.org/10.24925/turjaf.v6i12.1833-1837.2229
  • Canbolat, Ö., Kalkan, H., Karaman, Ş., & Filya, I. (2010). The investigation of possibility of grape pomace as carbohydrate source in alfalfa silages. Journal of the Faculty of Veterinary Medicine, Kafkas University, 16(2), 269-276. http://doi.org/10.9775/kvfd.2009.679
  • Coblentz, W. K., Muck, R. E., Borchardt, M. A., Spencer, S. K., Jokela, W. E., Bertram, M. G., & Coffey, K. P. (2014). Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa. Journal of Dairy Science, 97(11), 7197-7211. https://doi.org/10.3168/jds.2014-8582
  • Crawshaw, R. (2003). Co-product feeds: Animal feeds from the food and drinks industries. Nottingham University Press.
  • Denek, N., Aydin, S. S., & Can, A. (2017). The effects of dried pistachio (Pistachio vera L.) by-product addition on corn silage fermentation and in vitro methane production. Journal of Applied Animal Research, 45(1), 185-189. https://doi.org/10.1080/09712119.2016.1141778
  • Ergün, A., Tuncer, Ş., Çolpan, İ., Yalçın, S., Yıdız, G., Küçükersan, K., & Şehu, A. (2016). Yemler, Yem Hijyeni ve Teknolojisi (6. Baskı). Kardelen Ofset.
  • FAO. (2020). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL. [Access date: April 04, 2022].
  • FAO. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL. [Access date: April 04, 2022].
  • Ferraretto, L. F., Fonseca, A. C., Sniffen, C. J., Formigoni, A., & Shaver, R. D. (2015). Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. Journal of Dairy Science, 98(1), 395-405. https://doi.org/10.3168/jds.2014-8232
  • Filya, I. (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal Feed Science and Technology, 116(1-2), 141-150. https://doi.org/10.1016/j.anifeedsci.2004.06.003
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effect of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extract on partitioning of nutrients from roughage and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89. https://doi.org/10.1016/j.anifeedsci.2007.09.010
  • Guo, X. S., Ding, W. R., Han, J. G., & Zhou, H. (2008). Characterization of protein fractions and amino acids in ensiled alfalfa treated with different chemical additives. Animal Feed Science and Technology, 142(1-2), 89-98. https://doi.org/10.1016/j.anifeedsci.2007.07.005
  • Harmanlıoglu, O., & Kaplan, M. (2020). Herbage yield and quality traits of different alfalfa (Medicago sativa) cultivars. Current Trends in Natural Sciences, 9(17), 74-82. https://doi.org/10.47068/ctns.2020.v9i17.008
  • Huhtanen, P., Khalili, H., Nousiainen, J. I., Rinne, M., Jaakkola, S., Heikkilä, T., & Nousiainen, J. (2002). Prediction of the relative intake potential of grass silage by dairy cows. Livestock Production Science, 73(2-3), 111-130. https://doi.org/10.1016/s0301-6226(01)00279-2
  • Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A, 799(1-2), 101-110. https://doi.org/10.1016/s0021-9673(97)01061-3
  • Kamalak, A., Bal, M. A., Aydın, R., & Atalay, A. I. (2009). Gladiçya meyvesinin katkı maddesi olarak yonca silajında kullanımı. (Proje No. 107O401). TÜBİTAK.
  • Kamalak, A., Özoğul, F., Çalışlar. S., & Canbolat, O. (2012). Silaj katkı maddesi olarak yemlik keçiboynuzu kırığının yonca silajının kompozisyonuna, koyunlarda yem tüketimine, sindirim derecesine ve rumen fermantasyonuna etkisi. (Proje No. 110O397). TÜBITAK.
  • Ke, W. C., Ding, W. R., Xu, D. M., Ding, L. M., Zhang, P., Li, F. D., & Guo, X. S. (2017). Effects of addition of malic or citric acids on fermentation quality and chemical characteristics of alfalfa silage. Journal of Dairy Science, 100(11), 8958-8966. https://doi.org/10.3168/jds.2017-12875
  • Kılıç, A. (1986). Silo Yemi. Bilgehan Basımevi.
  • Kung Jr, L., & Muck, R. E. (1997, February 11–13). Animal response to silage additives. Proceedings of the Silage: Field to Feedbunk North American Conference [Paper presentation], New York, USA.
  • Kung Jr, L., Robinson, J. R., Ranjit, N. K., Chen, J. H., Golt, C. M., & Pesek, J. D. (2000). Microbial populations, fermentation end products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. Journal of Dairy Science, 83(7), 1479-1486. https://doi.org/10.3168/jds.s0022-0302(00)75020-x
  • Kung Jr, L., Stokes, M. R., & Lin, C. J. (2003). Silage additives. In D. R. Buxton, R. E. Muck, J. H. Harrison (Eds.), Silage science and technology (pp. 293-348). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Inc. https://doi.org/10.2134/agronmonogr42.c7
  • Kung Jr, L. (2009, July 27-29). Potential factors that may limit the effectiveness of silage additives. Proceedings of the 15th International Silage Conference [Paper presentation], USA.
  • Kung Jr, L. (2018). Silage fermentation and additives. Latin American Archives of Animal Production, 26(3-4), 61-66.
  • Lashkari, S., & Taghizadeh, A. (2013). Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products. Journal of Animal Physiology and Animal Nutrition, 97(4), 701-709. https://doi.org/10.1111/j.1439-0396.2012.01312.x
  • Lee, M. R. F., Scott, M. B., Tweed, J. K. S., Minchin, F. R., & Davies, D. R. (2008). Effects of polyphenol oxidase on lipolysis and proteolysis of red clover silage with and without a silage inoculant (Lactobacillus plantarum L54). Animal Feed Science and Technology, 144(1-2), 125-136. https://doi.org/10.1016/j.anifeedsci.2007.09.035
  • Li, P., Wang, S., Guan, X., Cen, X., Hu, C., Peng, W., Wang, Y., & Su, W. (2014). Six months chronic toxicological evaluation of naringin in Sprague–Dawley rats. Food and Chemical Toxicology, 66, 65-75. https://doi.org/10.1016/j.fct.2014.01.023
  • Lim, J. M., Nestor Jr, K. E., & Kung Jr, L. (2015). The effect of hybrid type and dietary proportions of corn silage on the lactation performance of high-producing dairy cows. Journal of Dairy Science, 98(2), 1195-1203. https://doi.org/10.3168/jds.2014-8725
  • Lopez, S., Makkar, H. P. S., & Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In P. Vercoe, H. P. S. Makkar & A. Schlink (Eds.), In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies (pp. 191-231). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3297-3_10
  • Makkar, H. P. S. (2004). Recent advances in in vitro gas method for evaluation of nutritional quality of feed resources. https://www.fao.org/4/y5159e/y5159e05.htm#bm05. [Access date: April 24, 2025].
  • Mamma, D., & Christakopoulos, P. (2014). Biotransformation of citrus by-prod ucts into value added products. Waste and Biomass Valorization, 5, 529-549. https://doi.org/10.1007/s12649-013-9250-y
  • McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The Biochemistry of silage (2nd ed). Chalcombe Publications.
  • Meeske, R. (2005). Silage additives: Do they make a difference?. South African Journal of Animal Science 6, 49–55.
  • Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. https://doi.org/10.1017/s0021859600086305
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 7–55.
  • Moate, P. J., Williams, S. R. O., Torok, V. A., Hannah, M. C., Ribaux, B. E., Tavendale, M. H., Eckard, R. J., Jacobs, J. L., Auldist, M. J., & Wales, W. J. (2014). Grape marc reduces methane emissions when fed to dairy cows. Journal of Dairy Science, 97(8), 5073-5087. https://doi.org/10.3168/jds.2013-7588
  • Muck, R. E. (1993, February 23-25). The role of silage additives in making high guality silage [Paper presentation]. Proceedings of the National Silage Production Conference on Silage Production from Seed to Animal Syracuse, USA.
  • Ni, K., Zhao, J., Zhu, B., Su, R., Pan, Y., Ma, J., Zhou, G., Tao, Y., Liu, X., & Zhong, J. (2018). Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresource Technology, 265, 563-567. https://doi.org/10.1016/j.biortech.2018.05.097
  • Olowu, O. O. (2021). Assessing nutritive value and in vitro digestibility of peels and pomaces of different citrus species [MSc thesis, University of Niğde Ömer Halisdemir]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Palangi, V., Taghizadeh, A., & Sadeghzadeh, M. K. (2013). Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. Journal of Biodiversity and Environmental Sciences, 3(6), 8-16.
  • Sakalar, B., & Kamalak, A. (2016). Use of dried molasses beet pulp in ensiling of alfalfa plant. Anadolu Journal of Agricultural Sciences, 31(1), 157-164. https://doi.org/10.7161/anajas.2016.31.1.157-164
  • Santos, A. O., Avila, C. L. S., Pinto, J. C., Carvalho, B. F., Dias, D. R., & Schwan, R. F. (2016). Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. Journal of Applied Microbiology, 120(2), 266-279. https://doi.org/10.1111/jam.12980
  • Sarwar, M., Khan, M. A., & Iqbal, Z. (2002). Feed resources for livestock in Pakistan. International Journal of Agriculture and Biology, 4(1), 186–192.
  • Scerra, V., Caparra, P., Foti, F., Lanza, M., & Priolo, A. (2001). Citrus pulp and wheat straw silage as an ingredient in lamb diets: effect on growth and carcass and meat quality. Small Ruminant Research, 40(1), 51-56. https://doi.org/10.1016/s0921-4488(00)00208-x
  • Schmidt, R. J., & Kung Jr, L. (2010). The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. Journal of Dairy Science, 93(4), 1616-1624. https://doi.org/10.3168/jds.2009-2555
  • SPSS. (2017). Statistical analysis software (version 25.0) [Computer software]. SPSS Inc.
  • Stallings, C. C., Townes, R., Jasse, B. W., & Thomas, J. W. (1981). Changes in alfalfa haylage during wilting and ensiling with and without additivies. Journal of Animal Science, 53(3), 765-773. https://doi.org/10.2527/jas1981.533765x
  • Tariq, M. (2021). In vitro digestibility of alfalfa silage supplemented with different amount of orange and mandarin pulp. [MSc thesis, University of Niğde Ömer Halisdemir]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Tayengwa, T., & Mapiye, C. (2018). Citrus and winery wastes: Promising dietary supplements for sustainable ruminant animal nutrition, health, production, and meat quality. Sustainability, 10(10), 3718. https://doi.org/10.3390/su10103718
  • Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853-2867. https://doi.org/10.1098/rstb.2010.0134
  • Uçar, C. (2016). Effects of pomegranate peels and pomegranate flowers on silage quality and in vitro gas production of alfalfa silage [MSc thesis, University of Ondokuz Mayıs]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • USDA. (2023). Citrus: World Markets and Trade. https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. [Access date: March 20, 2023].
  • Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.s0022-0302(91)78551-2
  • Weinberg, Z. G., & Muck, R. E. (2007). New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 19(1), 53-68. https://doi.org/10.1111/j.1574-6976.1996.tb00253.x
  • Weinberg, Z. G., Ashbell, G., Hen, Y., & Azrieli, A. (1993). The effect of applying lactic acid bacteria ensiling on the aerobic stability of silages. Journal of Applied Microbiology, 75(6), 512-518. https://doi.org/10.1111/j.1365-2672.1993.tb01588.x
  • Wilkinson, J. M., & Davies, D. R. (2013). The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, 68(1), 1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x
  • Winters, A. L., Cockburn, J. E., Dhnaoa, M. S., & Merry, R. J. (2000). Effect of lactic acid bacteria in inoculants on changes in amino acid composition during ensilage of sterile and non-sterile ryegrass. Journal of Applied Microbiology, 89(3), 442-452. https://doi.org/10.1046/j.1365-2672.2000.01133.x
  • Yalçinkaya,Y. M., Baytok, E., & Yörük, M. (2012). Some physical and chemical properties of different fruit pulp silages. Journal of The Faculty of Veterinary Medicine Erciyes University, 9(2), 95-106.
  • Yuan, X. J., Wen, A. Y., Wang. J., Desta, S. T., Dong, Z. H., & Shao, T. (2018). Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa (Medicago sativa L.) silage. Journal of the Science of Food and Agriculture, 98(1), 328-335. https://doi.org/10.1002/jsfa.8475
  • Zhang, M., Lv, H., Tan, Z., Li, Y., Wang, Y., Pang, H., Li, Z., Jiao, Z., & Jin, Q. (2017). Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria. Animal Science Journal, 88(2), 277-285. https://doi.org/10.1111/asj.12632

Yonca (Medicago sativa L.) Silaj Kalitesinin İyileştirilmesinde Narenciye Posası Atıklarının Değerlendirilmesi: Kimyasal Bileşim, Fermantasyon, Gaz Üretimi ve Aerobik Stabilite Özellikleri Üzerindeki Etkileri

Year 2025, Volume: 11 Issue: 2, 242 - 255, 29.08.2025
https://doi.org/10.24180/ijaws.1665278

Abstract

Bu çalışma, farklı narenciye posalarının düşük suda çözünür karbonhidrat (SÇK) ve yüksek protein içeriğine sahip yonca (Medicago sativa L.) silajlarının kalite özellikleri üzerindeki etkisini belirlemek amacıyla gerçekleştirilmiştir. Çiçeklenme öncesi dönemde hasat edilen yonca, 1-3 cm uzunluğunda doğranmış ve %0, %5, %10 oranlarında taze portakal, mandalina, greyfurt ve limon posaları eklenerek, üçer tekerrürlü olarak vakumlu torbalarda 90 gün boyunca silolanmıştır. Silolama süresinin sonunda kimyasal analizler, gaz üretimi (GP) ölçümleri ve diğer hesaplamalar yapılmıştır. Narenciye posası ilavesi, silajların kuru madde (KM), ham kül (HK), ham protein (HP) ve Flieg Skoru (FS) değerlerini artırırken, pH, net gaz üretimi (GÜ) ve metan (CH4) seviyelerini düşürmüştür. %10 oranında mandalina posası ilavesi, silajların FS’sini %50’den fazla yükseltmiştir. Kontrol grubu silajları "düşük kalite" olarak sınıflandırılırken, %10 mandalina posası ilavesi ile silajlar "iyi kalite" seviyesine yükselmiştir. Ayrıca, %5 oranında greyfurt posası ilavesi ile silajların mililitre başına CH4 üretiminde %27 oranında azalma tespit edilmiştir. Kontrol grubu ile karşılaştırıldığında, yalnızca %5 mandalina posası ilaveli silajlar gaz üretimi açısından anti-metanojenik özellik göstermiştir. Narenciye posası ilavesi, yonca silajında meydana gelen aşırı protein yıkımını önlemiştir. Yoncanın silolanmasında narenciye posası atıklarının kullanılması, silajın hem besin değerini hem de fermantasyon özelliklerini iyileştirerek silaj kalitesini artırabilir ve çevresel kirliliği belirli ölçüde azaltabilir.

References

  • Albrecht, K. A., & Muck, R. E. (1991). Proteolysis in ensiled forage legumes that vary in tannin concentration Crop Science, 31(2), 464-469. https://doi.org/10.2135/cropsci1991.0011183x003100020048x
  • AOAC. (1990). Official methods of analysis (15th edn). Association of Official Analytical Chemists.
  • Atalay, A. I. (2009). Investigation on the use of molasses and Laurus nobilis mixture in alfalfa silage and the effect on the silage quality [MSc thesis, University of Kahramanmaraş Sutcu Imam]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Avci, M., Hatipoglu, R., Çinar, S., & Kiliçalp, N. (2018). Assessment of yield and quality characteristics of alfalfa (Medicago sativa L.) cultivars with different fall dormancy rating. Legume Research, 41(3), 369-373. https://doi.org/10.18805/lr-364
  • Bakshi, M. P. S., & Wadhwa, M. (2013). Nutritional evaluation of cannery and fruit wastes as livestock feed. Indian Journal of Animal Sciences, 83(11), 1198-1202.
  • Bampidis, V. A., & Robinson, P. H. (2006). Citrus by-products as ruminant feeds: A review. Animal Feed Science and Technology, 128(3-4), 175-217. https://doi.org/10.1016/j.anifeedsci.2005.12.002
  • Başar, Y., & Atalay, A. I. (2020). The use of citrus pulps as an alternative feed sources in ruminant feeding and its methane production capacities. Journal of the Institute of Science and Technology, 10(2), 1449-1455. https://doi.org/10.21597/jist.725292
  • Besharati, M., Palangi, V., Ghozalpour, V., Nemati, Z., & Ayaşan, T. (2021). Essential oil and apple pomace affect fermentation and aerobic stability of alfalfa silage. South African Journal of Animal Science, 51(3), 371-377. https://doi.org/10.4314/sajas.v51i3.11
  • Besharati, M., Shafipour, N., Abdi, E., & Nemati, Z. (2017). Effects of supplementation alfalfa silage with molasses, orange pulp and Lactobacillus buchneri on in vitro dry matter digestibility and gas production. Journal of Bioscience and Biotechnology, 6(1), 43-47.
  • Beyzi, S., Ulger, I., Kaliber, M., & Konca, Y. (2018). Determination of chemical, nutritional and fermentation properties of citrus pulp silages. Turkish Journal of Agriculture-Food Science and Technology, 6(12), 1833-1837. https://doi.org/10.24925/turjaf.v6i12.1833-1837.2229
  • Canbolat, Ö., Kalkan, H., Karaman, Ş., & Filya, I. (2010). The investigation of possibility of grape pomace as carbohydrate source in alfalfa silages. Journal of the Faculty of Veterinary Medicine, Kafkas University, 16(2), 269-276. http://doi.org/10.9775/kvfd.2009.679
  • Coblentz, W. K., Muck, R. E., Borchardt, M. A., Spencer, S. K., Jokela, W. E., Bertram, M. G., & Coffey, K. P. (2014). Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa. Journal of Dairy Science, 97(11), 7197-7211. https://doi.org/10.3168/jds.2014-8582
  • Crawshaw, R. (2003). Co-product feeds: Animal feeds from the food and drinks industries. Nottingham University Press.
  • Denek, N., Aydin, S. S., & Can, A. (2017). The effects of dried pistachio (Pistachio vera L.) by-product addition on corn silage fermentation and in vitro methane production. Journal of Applied Animal Research, 45(1), 185-189. https://doi.org/10.1080/09712119.2016.1141778
  • Ergün, A., Tuncer, Ş., Çolpan, İ., Yalçın, S., Yıdız, G., Küçükersan, K., & Şehu, A. (2016). Yemler, Yem Hijyeni ve Teknolojisi (6. Baskı). Kardelen Ofset.
  • FAO. (2020). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL. [Access date: April 04, 2022].
  • FAO. (2022). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL. [Access date: April 04, 2022].
  • Ferraretto, L. F., Fonseca, A. C., Sniffen, C. J., Formigoni, A., & Shaver, R. D. (2015). Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. Journal of Dairy Science, 98(1), 395-405. https://doi.org/10.3168/jds.2014-8232
  • Filya, I. (2004). Nutritive value and aerobic stability of whole crop maize silage harvested at four stages of maturity. Animal Feed Science and Technology, 116(1-2), 141-150. https://doi.org/10.1016/j.anifeedsci.2004.06.003
  • Goel, G., Makkar, H. P. S., & Becker, K. (2008). Effect of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extract on partitioning of nutrients from roughage and concentrate-based feeds to methane. Animal Feed Science and Technology, 147(1-3), 72-89. https://doi.org/10.1016/j.anifeedsci.2007.09.010
  • Guo, X. S., Ding, W. R., Han, J. G., & Zhou, H. (2008). Characterization of protein fractions and amino acids in ensiled alfalfa treated with different chemical additives. Animal Feed Science and Technology, 142(1-2), 89-98. https://doi.org/10.1016/j.anifeedsci.2007.07.005
  • Harmanlıoglu, O., & Kaplan, M. (2020). Herbage yield and quality traits of different alfalfa (Medicago sativa) cultivars. Current Trends in Natural Sciences, 9(17), 74-82. https://doi.org/10.47068/ctns.2020.v9i17.008
  • Huhtanen, P., Khalili, H., Nousiainen, J. I., Rinne, M., Jaakkola, S., Heikkilä, T., & Nousiainen, J. (2002). Prediction of the relative intake potential of grass silage by dairy cows. Livestock Production Science, 73(2-3), 111-130. https://doi.org/10.1016/s0301-6226(01)00279-2
  • Justesen, U., Knuthsen, P., & Leth, T. (1998). Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection. Journal of Chromatography A, 799(1-2), 101-110. https://doi.org/10.1016/s0021-9673(97)01061-3
  • Kamalak, A., Bal, M. A., Aydın, R., & Atalay, A. I. (2009). Gladiçya meyvesinin katkı maddesi olarak yonca silajında kullanımı. (Proje No. 107O401). TÜBİTAK.
  • Kamalak, A., Özoğul, F., Çalışlar. S., & Canbolat, O. (2012). Silaj katkı maddesi olarak yemlik keçiboynuzu kırığının yonca silajının kompozisyonuna, koyunlarda yem tüketimine, sindirim derecesine ve rumen fermantasyonuna etkisi. (Proje No. 110O397). TÜBITAK.
  • Ke, W. C., Ding, W. R., Xu, D. M., Ding, L. M., Zhang, P., Li, F. D., & Guo, X. S. (2017). Effects of addition of malic or citric acids on fermentation quality and chemical characteristics of alfalfa silage. Journal of Dairy Science, 100(11), 8958-8966. https://doi.org/10.3168/jds.2017-12875
  • Kılıç, A. (1986). Silo Yemi. Bilgehan Basımevi.
  • Kung Jr, L., & Muck, R. E. (1997, February 11–13). Animal response to silage additives. Proceedings of the Silage: Field to Feedbunk North American Conference [Paper presentation], New York, USA.
  • Kung Jr, L., Robinson, J. R., Ranjit, N. K., Chen, J. H., Golt, C. M., & Pesek, J. D. (2000). Microbial populations, fermentation end products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. Journal of Dairy Science, 83(7), 1479-1486. https://doi.org/10.3168/jds.s0022-0302(00)75020-x
  • Kung Jr, L., Stokes, M. R., & Lin, C. J. (2003). Silage additives. In D. R. Buxton, R. E. Muck, J. H. Harrison (Eds.), Silage science and technology (pp. 293-348). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Inc. https://doi.org/10.2134/agronmonogr42.c7
  • Kung Jr, L. (2009, July 27-29). Potential factors that may limit the effectiveness of silage additives. Proceedings of the 15th International Silage Conference [Paper presentation], USA.
  • Kung Jr, L. (2018). Silage fermentation and additives. Latin American Archives of Animal Production, 26(3-4), 61-66.
  • Lashkari, S., & Taghizadeh, A. (2013). Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products. Journal of Animal Physiology and Animal Nutrition, 97(4), 701-709. https://doi.org/10.1111/j.1439-0396.2012.01312.x
  • Lee, M. R. F., Scott, M. B., Tweed, J. K. S., Minchin, F. R., & Davies, D. R. (2008). Effects of polyphenol oxidase on lipolysis and proteolysis of red clover silage with and without a silage inoculant (Lactobacillus plantarum L54). Animal Feed Science and Technology, 144(1-2), 125-136. https://doi.org/10.1016/j.anifeedsci.2007.09.035
  • Li, P., Wang, S., Guan, X., Cen, X., Hu, C., Peng, W., Wang, Y., & Su, W. (2014). Six months chronic toxicological evaluation of naringin in Sprague–Dawley rats. Food and Chemical Toxicology, 66, 65-75. https://doi.org/10.1016/j.fct.2014.01.023
  • Lim, J. M., Nestor Jr, K. E., & Kung Jr, L. (2015). The effect of hybrid type and dietary proportions of corn silage on the lactation performance of high-producing dairy cows. Journal of Dairy Science, 98(2), 1195-1203. https://doi.org/10.3168/jds.2014-8725
  • Lopez, S., Makkar, H. P. S., & Soliva, C. R. (2010). Screening plants and plant products for methane inhibitors. In P. Vercoe, H. P. S. Makkar & A. Schlink (Eds.), In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies (pp. 191-231). Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3297-3_10
  • Makkar, H. P. S. (2004). Recent advances in in vitro gas method for evaluation of nutritional quality of feed resources. https://www.fao.org/4/y5159e/y5159e05.htm#bm05. [Access date: April 24, 2025].
  • Mamma, D., & Christakopoulos, P. (2014). Biotransformation of citrus by-prod ucts into value added products. Waste and Biomass Valorization, 5, 529-549. https://doi.org/10.1007/s12649-013-9250-y
  • McDonald, P., Henderson, A. R., & Heron, S. J. E. (1991). The Biochemistry of silage (2nd ed). Chalcombe Publications.
  • Meeske, R. (2005). Silage additives: Do they make a difference?. South African Journal of Animal Science 6, 49–55.
  • Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D., & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93(1), 217-222. https://doi.org/10.1017/s0021859600086305
  • Menke, K. H., & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 7–55.
  • Moate, P. J., Williams, S. R. O., Torok, V. A., Hannah, M. C., Ribaux, B. E., Tavendale, M. H., Eckard, R. J., Jacobs, J. L., Auldist, M. J., & Wales, W. J. (2014). Grape marc reduces methane emissions when fed to dairy cows. Journal of Dairy Science, 97(8), 5073-5087. https://doi.org/10.3168/jds.2013-7588
  • Muck, R. E. (1993, February 23-25). The role of silage additives in making high guality silage [Paper presentation]. Proceedings of the National Silage Production Conference on Silage Production from Seed to Animal Syracuse, USA.
  • Ni, K., Zhao, J., Zhu, B., Su, R., Pan, Y., Ma, J., Zhou, G., Tao, Y., Liu, X., & Zhong, J. (2018). Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresource Technology, 265, 563-567. https://doi.org/10.1016/j.biortech.2018.05.097
  • Olowu, O. O. (2021). Assessing nutritive value and in vitro digestibility of peels and pomaces of different citrus species [MSc thesis, University of Niğde Ömer Halisdemir]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Palangi, V., Taghizadeh, A., & Sadeghzadeh, M. K. (2013). Determine of nutritive value of dried citrus pulp various using in situ and gas production techniques. Journal of Biodiversity and Environmental Sciences, 3(6), 8-16.
  • Sakalar, B., & Kamalak, A. (2016). Use of dried molasses beet pulp in ensiling of alfalfa plant. Anadolu Journal of Agricultural Sciences, 31(1), 157-164. https://doi.org/10.7161/anajas.2016.31.1.157-164
  • Santos, A. O., Avila, C. L. S., Pinto, J. C., Carvalho, B. F., Dias, D. R., & Schwan, R. F. (2016). Fermentative profile and bacterial diversity of corn silages inoculated with new tropical lactic acid bacteria. Journal of Applied Microbiology, 120(2), 266-279. https://doi.org/10.1111/jam.12980
  • Sarwar, M., Khan, M. A., & Iqbal, Z. (2002). Feed resources for livestock in Pakistan. International Journal of Agriculture and Biology, 4(1), 186–192.
  • Scerra, V., Caparra, P., Foti, F., Lanza, M., & Priolo, A. (2001). Citrus pulp and wheat straw silage as an ingredient in lamb diets: effect on growth and carcass and meat quality. Small Ruminant Research, 40(1), 51-56. https://doi.org/10.1016/s0921-4488(00)00208-x
  • Schmidt, R. J., & Kung Jr, L. (2010). The effects of Lactobacillus buchneri with or without a homolactic bacterium on the fermentation and aerobic stability of corn silages made at different locations. Journal of Dairy Science, 93(4), 1616-1624. https://doi.org/10.3168/jds.2009-2555
  • SPSS. (2017). Statistical analysis software (version 25.0) [Computer software]. SPSS Inc.
  • Stallings, C. C., Townes, R., Jasse, B. W., & Thomas, J. W. (1981). Changes in alfalfa haylage during wilting and ensiling with and without additivies. Journal of Animal Science, 53(3), 765-773. https://doi.org/10.2527/jas1981.533765x
  • Tariq, M. (2021). In vitro digestibility of alfalfa silage supplemented with different amount of orange and mandarin pulp. [MSc thesis, University of Niğde Ömer Halisdemir]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Tayengwa, T., & Mapiye, C. (2018). Citrus and winery wastes: Promising dietary supplements for sustainable ruminant animal nutrition, health, production, and meat quality. Sustainability, 10(10), 3718. https://doi.org/10.3390/su10103718
  • Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2853-2867. https://doi.org/10.1098/rstb.2010.0134
  • Uçar, C. (2016). Effects of pomegranate peels and pomegranate flowers on silage quality and in vitro gas production of alfalfa silage [MSc thesis, University of Ondokuz Mayıs]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • USDA. (2023). Citrus: World Markets and Trade. https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. [Access date: March 20, 2023].
  • Van Soest, P. V., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/10.3168/jds.s0022-0302(91)78551-2
  • Weinberg, Z. G., & Muck, R. E. (2007). New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Reviews, 19(1), 53-68. https://doi.org/10.1111/j.1574-6976.1996.tb00253.x
  • Weinberg, Z. G., Ashbell, G., Hen, Y., & Azrieli, A. (1993). The effect of applying lactic acid bacteria ensiling on the aerobic stability of silages. Journal of Applied Microbiology, 75(6), 512-518. https://doi.org/10.1111/j.1365-2672.1993.tb01588.x
  • Wilkinson, J. M., & Davies, D. R. (2013). The aerobic stability of silage: key findings and recent developments. Grass and Forage Science, 68(1), 1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x
  • Winters, A. L., Cockburn, J. E., Dhnaoa, M. S., & Merry, R. J. (2000). Effect of lactic acid bacteria in inoculants on changes in amino acid composition during ensilage of sterile and non-sterile ryegrass. Journal of Applied Microbiology, 89(3), 442-452. https://doi.org/10.1046/j.1365-2672.2000.01133.x
  • Yalçinkaya,Y. M., Baytok, E., & Yörük, M. (2012). Some physical and chemical properties of different fruit pulp silages. Journal of The Faculty of Veterinary Medicine Erciyes University, 9(2), 95-106.
  • Yuan, X. J., Wen, A. Y., Wang. J., Desta, S. T., Dong, Z. H., & Shao, T. (2018). Effects of four short-chain fatty acids or salts on fermentation characteristics and aerobic stability of alfalfa (Medicago sativa L.) silage. Journal of the Science of Food and Agriculture, 98(1), 328-335. https://doi.org/10.1002/jsfa.8475
  • Zhang, M., Lv, H., Tan, Z., Li, Y., Wang, Y., Pang, H., Li, Z., Jiao, Z., & Jin, Q. (2017). Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria. Animal Science Journal, 88(2), 277-285. https://doi.org/10.1111/asj.12632
There are 69 citations in total.

Details

Primary Language English
Subjects Animal Feeding, Pasture-Meadow Forage Plants
Journal Section Tarla Bitkileri
Authors

Seda Akbay Tohumcu 0000-0002-0725-1318

Emrah Kaya 0000-0001-7337-0406

Faruk Tohumcu 0000-0003-4092-4868

Early Pub Date August 28, 2025
Publication Date August 29, 2025
Submission Date March 27, 2025
Acceptance Date June 12, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Akbay Tohumcu, S., Kaya, E., & Tohumcu, F. (2025). Valorization of Citrus Pulp Wastes on Improving the Silage Quality of Alfalfa (Medicago sativa L.): Effects on Chemical Composition, Fermentation, Gas Production, and Aerobic Stability Properties. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 11(2), 242-255. https://doi.org/10.24180/ijaws.1665278

17365       17368       17367        17366      17369     17370