Research Article
BibTex RIS Cite

Tuz Stresi Altında Dışsal Putresin Uygulamaları ile Hıyarda Fide Büyümesinin İyileştirilmesi

Year 2025, Volume: 11 Issue: 2, 151 - 163, 29.08.2025
https://doi.org/10.24180/ijaws.1683839

Abstract

Bu araştırmanın amacı, tuzlu koşullarda hıyarın (Cucumis sativus L.) fide büyümesi üzerine değişen konsantrasyonlarda dışsal putresin (Put) uygulamalarının etkisini araştırmaktır. Çalışmada 200 mM NaCl ve üç farklı putresin dozu (0.4, 0.8 ve 1.2 mM) dahil olmak üzere toplam sekiz farklı uygulama, bireysel ve birleşik etkilerini değerlendirmek için kullanılmıştır. Sonuçlar, tuz stresinin fide boyu, fidelerin yaş ve kuru ağırlığı, gövde çapı, yaprak sayısı, klorofil içeriği, kuru madde oranı ve renk kalitesi gibi çok sayıda morfolojik ve fizyolojik özellikte önemli azalmaya yol açtığını göstermiştir. Ancak özellikle 0.4 mM Put uygulaması tuzluluğun olumsuz etkilerini önemli ölçüde azaltmış ve hem normal hem de tuzlu koşullar altında fide büyümesini iyileştirmiştir. Çoğu büyüme ve fizyolojik parametre için en yüksek değerler 0.4 mM Put uygulamasıyla gözlenmiştir. Öte yandan, özellikle tuz stresiyle birlikte daha yüksek putresin konsantrasyonları ek fayda sağlamamış ve genellikle tek başına tuzluluğun olumsuz etkilerini yansıtmıştır. 0.4 Put + 200 NaCl uygulamasının, 200 NaCl uygulamasına kıyasla fide boyunu %10.68, gövde çapını %25.23, fide yaş ağırlığını %41.94, yaprak sayısını %26.32, klorofil içeriğini %46.51 ve kuru madde oranını %24.97 oranında artırdığı bulunmuştur. Tuzlu koşullarda hıyarda fide büyümesini artırmak için 0.4 mM Put uygulamasının önerilebileceği sonucuna varılmıştır. Bu bulgular, optimum dozlarda dışsal putresin uygulamasının hıyar yetiştiriciliğinde fide büyümesini ve tuz stresine dayanıklılığı artırmak için pratik bir strateji olarak hizmet edebileceğini göstermektedir.

References

  • Abdel-Azem, H. S., Shehata, S. M., El-Gizawy, A. M., El-Yazied, A. A., & Adam, S. M. (2015). Snap bean response to salicylic acid and putrescine used separately and jointly under two sowing dates. Middle East Journal of Applied Sciences, 5(4), 1211-1221.
  • Al-Momany, B., & Abu-Romman, S. (2023). Cucumber and salinity. Australian Journal of Crop Science, 17(7), 581-590. https://doi.org/10.21475/ajcs.23.17.07.p3915
  • Amin, A. A., Gharib, F. A., El-Awadi, M., & Rashad, E. S. M. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae, 129(3), 353-360. https://doi.org/10.1016/j.scienta.2011.03.052
  • AOAC. (1990). Official methods of analysis. In: Association of Official Analytical Chemists (15th ed.), Washington, DC, USA.
  • Aranda, R. R., & Syvertsen, J. P. (1996). The influence of foliar-applied urea nitrogen and saline solutions on net gas exchange of citrus leaves. Journal of the American Society for Horticultural Science, 121(3), 501-506.
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.04
  • Biçer, A. (2016). Putresinin tuzlu koşullarda yetişen mısır bitkisinin gelişimine ve bazı fizyoloik parametreleri üzerine etkisi [Yüksek Lisans Tezi, Harran Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Bukhat, S., Manzoor, H., Athar, H. U. R., Zafar, Z. U., Azeem, F., & Rasul, S. (2020). Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. Journal of Plant Growth Regulation, 39(2), 809-822. https://doi.org/10.1007/s00344-019-10024-z
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
  • Dölarslan, M., & Gül, E. (2012). Toprak bitki ilişkileri açısından tuzluluk. Türk Bilimsel Derlemeler Dergisi, 5(2), 56-59.
  • Ekinci, M., Yıldırım, E., Dursun, A., & Mohamedsrajaden, N. (2019). Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(2), 290-299. https://doi.org/10.29133/yyutbd.562482
  • Ekmekçi, E., Apan, M., & Kara, T. (2005). Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3), 118-125.
  • Eraslan, F., Inal, A., Savasturk, O., & Gunes, A. (2007). Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Scientia Horticulturae, 114(1), 5-10. https://doi.org/10.1016/j.scienta.2007.05.002
  • Gupta, K., Dey, A., & Gupta, B. (2013). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35, 2015-2036. https://doi.org/10.1007/s11738-013-1239-4
  • Jangra, A., Chaturvedi, S., Kumar, N., Singh, H., Sharma, V., Thakur, M., Tiwari, S., & Chhokar, V. (2023). Polyamines: the gleam of next-generation plant growth regulators for growth, development, stress mitigation, and hormonal crosstalk in plants - A systematic review. Journal of Plant Growth Regulation, 42(8), 5167-5191. https://doi.org/10.1007/s00344-022-10846-4
  • Kadakoğlu, B., & Gül, M. (2023). Recent developments in vegetable production in the world and Türkiye. Scientific Papers Series Management, Economic Engineering in Agriculture & Rural Development, 23(3), 409-418.
  • Kalac, P., & Krausova, P. (2005). A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chemistry, 90(1-2), 219-230. https://doi.org/10.1016/j.foodchem.2004.03.044
  • Khan, H., Ziaf, K., Amjad, M., & Iqbal, Q. (2012). Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean Journal of Agricultural Research, 72(3), 429-433. https://doi.org/10.4067/S0718-58392012000300018
  • Kibar, B., Şahin, B., & Kiemde, Q. (2020). Fasulyede (Phaseolus vulgaris L.) farklı tuz ve putresin uygulamalarının çimlenme ve fide gelişimi üzerine etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2315-2327. https://doi.org/10.21597/jist.776074
  • Kiemde, O., & Kibar, B. (2023). Effects of different putrescine and salicylic acid applications on germination, plant growth, quality properties and nutrient content of lettuce (Lactuca sativa L.) under saline conditions. Akademik Ziraat Dergisi, 12(1), 1-14. https://doi.org/10.29278/azd.1249936
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar [Doktora tezi, Çukurova Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Kuşvuran, Ş. (2011). Bamya (Abelmoschus esculentus L.) da tuz stresine tolerans bakımından genotipsel farklılıklar ve tarama parametrelerinin araştırılması. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi, 28(2), 55-70.
  • Mena, E., Leiva-Mora, M., Jayawardana, E. K. D., García, L., Veitía, N., Bermúdez-Caraballoso, I., & Ortíz, R. C. (2015). Effect of salt stress on seed germination and seedlings growth of Phaseolus vulgaris L. Cultivos Tropicales, 36(3), 71-74.
  • Mohamedsrajaden, N. S. (2019). Poliaminlerin tuzlu şartlarda domateste çimlenme, fide gelişimi, antioksidan enzim aktivitesi ve mineral madde içeriği üzerine etkisi [Yüksek Lisans Tezi, Atatürk Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
  • Okur, B., & Örçen, N. (2020). Soil salinization and climate change. In M. N. V. Prasad, & M. Pietrzykowski, (Eds.), Climate change and soil interactions (pp. 331-350). Elsevier, ISBN 9780128180327.
  • Rastgeldi, Z. H. A. (2010). Biberde farklı tuz konsantrasyonlarının bazı fizyolojik parametreler ile mineral madde içeriği üzerine etkisi [Yüksek Lisans Tezi, Harran Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Rolnik, A., & Olas, B. (2020). Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition, 78, 110788. https://doi.org/10.1016/j.nut.2020.110788
  • Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17(1), 34-40.
  • Salem, S. M. A. (2021). Effects of salicylic acid applications on plant growth criteria and nutrient uptake of lettuce (Lactuca sativa) under some abiotic stress conditions [Ph.D. Thesis, Van Yuzuncu Yıl University]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Seymen, B., & Önder. M. (2015). Kuru fasulye (Phaseolus vulgaris L.) genotiplerinde tuzluluğun fide gelişimi üzerine etkisi. Selçuk Tarım Bilimleri Dergisi, 2(2), 109-115.
  • Shi, H., Ye, T., & Chan, Z. (2013). Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 12(11), 4951-4964. https://doi.org/10.1021/pr400479
  • Shu, S., Guo, S. R., Sun, J., & Yuan, L. Y. (2012). Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia Plantarum, 146(3), 285-296. https://doi.org/10.1111/j.1399-3054.2012.01623.x
  • TÜİK (2024). Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. http://www.tuik.gov.tr. [Erişim tarihi: 17 Aralık 2024].
  • Xu, X., Shi, G., Ding, C., & Xu, Y. (2011). Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regulation, 63, 251-258. https://doi.org/10.1007/s10725-010-9522-5
  • Yıldırım, E., Turan, M., & Güvenç, İ. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3), 593-61. https://doi.org/10.1080/01904160801895118
  • Yuan, R. N., Shu, S., Guo, S. R., Sun, J., & Wu, J. Q. (2018). The positive roles of exogenous putrescine on chlorophyll metabolism and xanthophyll cycle in salt-stressed cucumber seedlings. Photosynthetica, 56(2), 557-566.
  • Yuan, Y., Zhong, M., Du, N., Shu, S., Sun, J., & Guo, S. (2019). Putrescine enhances salt tolerance of cucumber seedlings by regulating ion homeostasis. Environmental and Experimental Botany, 165, 70-82. https://doi.org/10.1016/j.envexpbot.2019.05.019
  • Zeid, I. M. (2004). Responses of been (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pakistan Journal of Biological Sciences, 7(2), 219-225. https://doi.org/10.3923/pjbs.2004.219.225
  • Zhang, W., Jiang, B., Li, W, Song, H., Yu, Y., & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulture, 122, 200-208. https://doi.org/10.1016/j.scienta.2009.05.013
  • Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31-38. https://doi.org/10.1111/plb.12884

Improvement of Seedling Growth in Cucumber Through External Putrescine Treatments Under Salt Stress

Year 2025, Volume: 11 Issue: 2, 151 - 163, 29.08.2025
https://doi.org/10.24180/ijaws.1683839

Abstract

The objective of this research was to investigate the impact of external putrescine (Put) treatments at varying concentrations on the seedling growth of cucumber (Cucumis sativus L.) under saline conditions. A total of eight different treatments, including 200 mM NaCl and three different putrescine doses (0.4, 0.8, and 1.2 mM), were used to evaluate their individual and combined impacts. The results indicated that salt stress led to a significant reduction in multiple morphological and physiological traits, such as seedling height, fresh and dry weight of seedlings, stem diameter, number of leaves, chlorophyll content, dry matter ratio, and color quality. However, especially the 0.4 mM Put treatment significantly mitigated the adverse effects of salinity and improved seedling growth under both normal and saline conditions. The highest values for most growth and physiological parameters were observed with 0.4 mM Put treatment. On the other hand, higher putrescine concentrations, particularly in combination with salt stress, did not provide additional benefits and generally reflected the negative effects of salinity alone. It was found that 0.4 Put + 200 NaCl treatment increased seedling height by 10.68%, stem diameter by 25.23%, seedling fresh weight by 41.94%, number of leaves by 26.32%, chlorophyll content by 46.51% and dry matter ratio by 24.97% compared to 200 NaCl treatment. It was concluded that the 0.4 mM Put treatment could be recommended to enhance seedling growth in cucumber under saline conditions. These findings suggest that external putrescine application at optimum doses can serve as a practical strategy to improve seedling growth and salt stress resistance in cucumber cultivation.

Thanks

The authors would like to thank undergraduate student Gamze Demir for her help in conducting the study.

References

  • Abdel-Azem, H. S., Shehata, S. M., El-Gizawy, A. M., El-Yazied, A. A., & Adam, S. M. (2015). Snap bean response to salicylic acid and putrescine used separately and jointly under two sowing dates. Middle East Journal of Applied Sciences, 5(4), 1211-1221.
  • Al-Momany, B., & Abu-Romman, S. (2023). Cucumber and salinity. Australian Journal of Crop Science, 17(7), 581-590. https://doi.org/10.21475/ajcs.23.17.07.p3915
  • Amin, A. A., Gharib, F. A., El-Awadi, M., & Rashad, E. S. M. (2011). Physiological response of onion plants to foliar application of putrescine and glutamine. Scientia Horticulturae, 129(3), 353-360. https://doi.org/10.1016/j.scienta.2011.03.052
  • AOAC. (1990). Official methods of analysis. In: Association of Official Analytical Chemists (15th ed.), Washington, DC, USA.
  • Aranda, R. R., & Syvertsen, J. P. (1996). The influence of foliar-applied urea nitrogen and saline solutions on net gas exchange of citrus leaves. Journal of the American Society for Horticultural Science, 121(3), 501-506.
  • Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. https://doi.org/10.1016/j.plaphy.2020.08.04
  • Biçer, A. (2016). Putresinin tuzlu koşullarda yetişen mısır bitkisinin gelişimine ve bazı fizyoloik parametreleri üzerine etkisi [Yüksek Lisans Tezi, Harran Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Bukhat, S., Manzoor, H., Athar, H. U. R., Zafar, Z. U., Azeem, F., & Rasul, S. (2020). Salicylic acid induced photosynthetic adaptability of Raphanus sativus to salt stress is associated with antioxidant capacity. Journal of Plant Growth Regulation, 39(2), 809-822. https://doi.org/10.1007/s00344-019-10024-z
  • Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, 11, 11-34.
  • Dölarslan, M., & Gül, E. (2012). Toprak bitki ilişkileri açısından tuzluluk. Türk Bilimsel Derlemeler Dergisi, 5(2), 56-59.
  • Ekinci, M., Yıldırım, E., Dursun, A., & Mohamedsrajaden, N. (2019). Putrescine, spermine and spermidine mitigated the salt stress damage on pepper (Capsicum annum L.) seedling. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 29(2), 290-299. https://doi.org/10.29133/yyutbd.562482
  • Ekmekçi, E., Apan, M., & Kara, T. (2005). Tuzluluğun bitki gelişimine etkisi. Ondokuz Mayıs Üniversitesi Ziraat Fakültesi Dergisi, 20(3), 118-125.
  • Eraslan, F., Inal, A., Savasturk, O., & Gunes, A. (2007). Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Scientia Horticulturae, 114(1), 5-10. https://doi.org/10.1016/j.scienta.2007.05.002
  • Gupta, K., Dey, A., & Gupta, B. (2013). Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum, 35, 2015-2036. https://doi.org/10.1007/s11738-013-1239-4
  • Jangra, A., Chaturvedi, S., Kumar, N., Singh, H., Sharma, V., Thakur, M., Tiwari, S., & Chhokar, V. (2023). Polyamines: the gleam of next-generation plant growth regulators for growth, development, stress mitigation, and hormonal crosstalk in plants - A systematic review. Journal of Plant Growth Regulation, 42(8), 5167-5191. https://doi.org/10.1007/s00344-022-10846-4
  • Kadakoğlu, B., & Gül, M. (2023). Recent developments in vegetable production in the world and Türkiye. Scientific Papers Series Management, Economic Engineering in Agriculture & Rural Development, 23(3), 409-418.
  • Kalac, P., & Krausova, P. (2005). A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods. Food Chemistry, 90(1-2), 219-230. https://doi.org/10.1016/j.foodchem.2004.03.044
  • Khan, H., Ziaf, K., Amjad, M., & Iqbal, Q. (2012). Exogenous application of polyamines improves germination and early seedling growth of hot pepper. Chilean Journal of Agricultural Research, 72(3), 429-433. https://doi.org/10.4067/S0718-58392012000300018
  • Kibar, B., Şahin, B., & Kiemde, Q. (2020). Fasulyede (Phaseolus vulgaris L.) farklı tuz ve putresin uygulamalarının çimlenme ve fide gelişimi üzerine etkileri. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(4), 2315-2327. https://doi.org/10.21597/jist.776074
  • Kiemde, O., & Kibar, B. (2023). Effects of different putrescine and salicylic acid applications on germination, plant growth, quality properties and nutrient content of lettuce (Lactuca sativa L.) under saline conditions. Akademik Ziraat Dergisi, 12(1), 1-14. https://doi.org/10.29278/azd.1249936
  • Kuşvuran, Ş. (2010). Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar [Doktora tezi, Çukurova Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Kuşvuran, Ş. (2011). Bamya (Abelmoschus esculentus L.) da tuz stresine tolerans bakımından genotipsel farklılıklar ve tarama parametrelerinin araştırılması. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi, 28(2), 55-70.
  • Mena, E., Leiva-Mora, M., Jayawardana, E. K. D., García, L., Veitía, N., Bermúdez-Caraballoso, I., & Ortíz, R. C. (2015). Effect of salt stress on seed germination and seedlings growth of Phaseolus vulgaris L. Cultivos Tropicales, 36(3), 71-74.
  • Mohamedsrajaden, N. S. (2019). Poliaminlerin tuzlu şartlarda domateste çimlenme, fide gelişimi, antioksidan enzim aktivitesi ve mineral madde içeriği üzerine etkisi [Yüksek Lisans Tezi, Atatürk Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280, 111736. https://doi.org/10.1016/j.jenvman.2020.111736
  • Okur, B., & Örçen, N. (2020). Soil salinization and climate change. In M. N. V. Prasad, & M. Pietrzykowski, (Eds.), Climate change and soil interactions (pp. 331-350). Elsevier, ISBN 9780128180327.
  • Rastgeldi, Z. H. A. (2010). Biberde farklı tuz konsantrasyonlarının bazı fizyolojik parametreler ile mineral madde içeriği üzerine etkisi [Yüksek Lisans Tezi, Harran Üniversitesi]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Rolnik, A., & Olas, B. (2020). Vegetables from the Cucurbitaceae family and their products: Positive effect on human health. Nutrition, 78, 110788. https://doi.org/10.1016/j.nut.2020.110788
  • Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17(1), 34-40.
  • Salem, S. M. A. (2021). Effects of salicylic acid applications on plant growth criteria and nutrient uptake of lettuce (Lactuca sativa) under some abiotic stress conditions [Ph.D. Thesis, Van Yuzuncu Yıl University]. https://tez.yok.gov.tr/UlusalTezMerkezi/
  • Seymen, B., & Önder. M. (2015). Kuru fasulye (Phaseolus vulgaris L.) genotiplerinde tuzluluğun fide gelişimi üzerine etkisi. Selçuk Tarım Bilimleri Dergisi, 2(2), 109-115.
  • Shi, H., Ye, T., & Chan, Z. (2013). Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 12(11), 4951-4964. https://doi.org/10.1021/pr400479
  • Shu, S., Guo, S. R., Sun, J., & Yuan, L. Y. (2012). Effects of salt stress on the structure and function of the photosynthetic apparatus in Cucumis sativus and its protection by exogenous putrescine. Physiologia Plantarum, 146(3), 285-296. https://doi.org/10.1111/j.1399-3054.2012.01623.x
  • TÜİK (2024). Türkiye İstatistik Kurumu, Bitkisel Üretim İstatistikleri. http://www.tuik.gov.tr. [Erişim tarihi: 17 Aralık 2024].
  • Xu, X., Shi, G., Ding, C., & Xu, Y. (2011). Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress. Plant Growth Regulation, 63, 251-258. https://doi.org/10.1007/s10725-010-9522-5
  • Yıldırım, E., Turan, M., & Güvenç, İ. (2008). Effect of foliar salicylic acid applications on growth, chlorophyll and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3), 593-61. https://doi.org/10.1080/01904160801895118
  • Yuan, R. N., Shu, S., Guo, S. R., Sun, J., & Wu, J. Q. (2018). The positive roles of exogenous putrescine on chlorophyll metabolism and xanthophyll cycle in salt-stressed cucumber seedlings. Photosynthetica, 56(2), 557-566.
  • Yuan, Y., Zhong, M., Du, N., Shu, S., Sun, J., & Guo, S. (2019). Putrescine enhances salt tolerance of cucumber seedlings by regulating ion homeostasis. Environmental and Experimental Botany, 165, 70-82. https://doi.org/10.1016/j.envexpbot.2019.05.019
  • Zeid, I. M. (2004). Responses of been (Phaseolus vulgaris) to exogenous putrescine treatment under salinity stress. Pakistan Journal of Biological Sciences, 7(2), 219-225. https://doi.org/10.3923/pjbs.2004.219.225
  • Zhang, W., Jiang, B., Li, W, Song, H., Yu, Y., & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulture, 122, 200-208. https://doi.org/10.1016/j.scienta.2009.05.013
  • Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant Biology, 21, 31-38. https://doi.org/10.1111/plb.12884
There are 41 citations in total.

Details

Primary Language English
Subjects Vegetable Growing and Treatment
Journal Section Bahçe Bitkileri
Authors

Beyhan Kibar 0000-0001-9253-5747

Cansu Nur Tehmitci 0009-0000-8436-0369

Early Pub Date August 28, 2025
Publication Date August 29, 2025
Submission Date April 25, 2025
Acceptance Date June 11, 2025
Published in Issue Year 2025 Volume: 11 Issue: 2

Cite

APA Kibar, B., & Tehmitci, C. N. (2025). Improvement of Seedling Growth in Cucumber Through External Putrescine Treatments Under Salt Stress. Uluslararası Tarım Ve Yaban Hayatı Bilimleri Dergisi, 11(2), 151-163. https://doi.org/10.24180/ijaws.1683839

17365       17368       17367        17366      17369     17370