Research Article
BibTex RIS Cite

Personalized Intraoperative Radiotherapy Balloon Applicator Design and Production With 3D Printer

Year 2023, , 205 - 212, 30.09.2023
https://doi.org/10.22399/ijcesen.1307070

Abstract

Radiation is the energy released from matter. Radiation is divided into two according to its source: natural and artificial radiation. Artificial radiation is used in treatment methods in medicine. One of these treatment methods is brachytherapy. Brachytherapy treatment is applied by placing small radioactive sources inside the body and sending beams directly to the cancerous cell. The main thing to consider in brachytherapy treatment is the selection of the applicator. The applicator is the device that enters the patient's body cavity.
In this study, based on the applicators currently used in the medical field, a patient-specific, biocompatible, sterilized, and reusable applicator will be created from PLA material by using a 3D printer.
The applicator to be designed will consist of 2 parts: the intrauterine tube and the spherical tip. The spherical tips, which vary according to the size of the tumor, will be pressed to integrate with the tube part of the applicator. Thus, a patient-specific design will be realized by using the spherical tip suitable for the patient’s tumor region.
As a result of the project, since the applicator will have spherical tips of different sizes, it completely covers the intrabody cavity of the patient. Thus, the movement of the applicator is limited, and dose distribution is prevented. The treatment process of the patient is improved.
Another result is that the prototype applicator printed with PLA filament is produced at a very low cost. Thus, access to the applicator becomes easier and its use in the medical field increases.

Supporting Institution

Yildiz Technical University Scientific Research Projects Coordination Unit

Project Number

FLO-2023-5647

References

  • [1] Weisstein, E. W. (n.d.). Eric Weisstein’s World of Physics. Eric Weisstein’s World of Physics. https://scienceworld.wolfram.com/physics/
  • [2] Extremely Low-Frequency Fields. (2007). World Health Organization.
  • [3] Shah, D. J., Sachs, R. K., & Wilson, D. J. (2012). Radiation-Induced Cancer: A Modern View. The British Journal of Radiology. 85:1020. https://doi.org/10.1259/bjr/25026140
  • [4] Ng, K.H. (2003). Non-Ionizing Radiations – Sources, Biological Effects, Emissions, and Exposures.
  • [5] Hacıosmanoğlu, T. (2017). Natural and Artificial Radiation Sources and Personal Dose Additives. Nuclear Medicine Seminars, 3(3); 166–171. https://doi.org/10.4274/nts.2017.017
  • [6] Latarjet, R., & Jagger, J. (1995). Rads and Grays: Becquerels and Curies. Radiation Research, 141(1); 105. https://doi.org/10.2307/3579098
  • [7] Yeyin, N. (2015). Biological Effects of Radiation. Nuclear Medicine Seminars, 1(3); 139–143. https://doi.org/10.4274/nts.002
  • [8] Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P. & et al. (2012). Radiation Exposure From CT Scans in Childhood and Subsequent Risk of Leukaemia and Brain Tumours: A Retrospective Cohort Study. The Lancet, 380(9840); 499–505. https://doi.org/10.1016/s0140-6736(12)60815-0
  • [9] Kastan, M. B., & Bartek, J. (2004). Cell-Cycle Checkpoints and Cancer. Nature, 432(7015); 316–323. https://doi.org/10.1038/nature03097
  • [10] Delaney, G., Jacob, S., Featherstone, C., & Barton, M. (2005). The Role of Radiotherapy in Cancer Treatment. Cancer, 104(6); 1129–1137. https://doi.org/10.1002/cncr.21324
  • [11] Mayer, C., Gasalberti, D. P., & Kumar, A. (2023). Brachytherapy. In StatPearls. StatPearls Publishing.
  • [12] Paunesku, T., & Woloschak, G. E. (2017). Future Directions of Intraoperative Radiation Therapy: A Brief Review. Frontiers in Oncology, 7. https://doi.org/10.3389/fonc.2017.00300
  • [13] Abe, M., & Takahashi, M. (1981). Intraoperative Radiotherapy: The Japanese Experience. International Journal of Radiation Oncology*Biology*Physics, 7(7); 863–868. https://doi.org/10.1016/0360-3016(81)90001-8
  • [14] Kyrgias, G., Hajiioannou, J., Tolia, M., Kouloulias, V., Lachanas, V., Skoulakis, C., et al. (2016). Intraoperative Radiation Therapy (IORT) in Head and Neck Cancer. Medicine, 95(50). https://doi.org/10.1097/md.0000000000005035
  • [15] Harris, E. E., & Small, W. (2017). Intraoperative Radiotherapy for Breast Cancer. Frontiers in Oncology, 7. https://doi.org/10.3389/fonc.2017.00317
  • [16] Akboru, M. H., Dincer, S. T., & Gursel, O. K. (2014). Intraoperative Radiotherapy. The Medical Journal of Okmeydani Training and Research Hospital, 29(Supplement 1); 25–34. https://doi.org/10.5222/otd.supp1.2013.025
  • [17] Şahin, K., & Turan, B. O. (2018). Comparative Analysis of 3D Printer Technologies. Stratejik ve Sosyal Araştırmalar Dergisi, 2(2); 97–116. https://doi.org/10.30692/sisad.441648
  • [18] Nielsen, A. V., Beauchamp, M. J., Nordin, G. P., & Woolley, A. T. (2020). 3D Printed Microfluidics. Annual review of analytical chemistry (Palo Alto, Calif.), 13(1); 45–65. https://doi.org/10.1146/annurev-anchem-091619-102649
  • [19] Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A Review on the Fused Deposition Modeling (FDM) 3D Printing: Filament Processing, Materials, and Printing Parameters. Open Engineering, 11(1); 639–649. https://doi.org/10.1515/eng-2021-0063
  • [20] Pakkanen, J., Manfredi, D., Minetola, P., & Iuliano, L. (2017). About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. Sustainable Design and Manufacturing 2017; 776–785. https://doi.org/10.1007/978-3-319-57078-5_73
  • [21] Joseph Arockiam, A., Karthikeyan Subramanian, Padmanabhan, R. G., Rajeshkumar Selvaraj, Dilip Kumar Bagal, & Rajesh, S. (2022). A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Materials Today: Proceedings, 50;2057–2064. https://doi.org/10.1016/j.matpr.2021.09.413
  • [22] Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5); 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
  • [23] Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review. Advanced Drug Delivery Reviews, 107; 367–392. https://doi.org/10.1016/j.addr.2016.06.012
  • [24] Crow S. (1993). Sterilization processes. Meeting the demands of today's health care technology. The Nursing Clinics of North America, 28(3); 687–695.
  • [25] Oth, O., Dauchot, C., Orellana, M., & Glineur, R. (2019). How to sterilize 3D-printed objects for surgical use? An evaluation of the volumetric deformation of 3D-printed GENIOPLASTY Guide in PLA and PETG after sterilization by low-temperature hydrogen peroxide gas plasma. The Open Dentistry Journal, 13(1); 410–417. https://doi.org/10.2174/1874210601913010410
  • [26] Perego, G., Cella, G. D., & Bastioli, C. (1996). Effect of Molecular Weight and Crystallinity on Poly(lactic acid) Mechanical Properties. Journal of Applied Polymer Science, 59(1); 37–43. https://doi.org/10.1002/(sici)1097-4628(19960103)59:1<37::aid-app6>3.0.co;2-n
  • [27] Van de Velde, K., & Kiekens, P. (2002). Biopolymers: Overview of Several Properties and Consequences on Their Applications. Polymer Testing, 21(4); 433–442. https://doi.org/10.1016/s0142-9418(01)00107-6
  • [28] McKeen, L. W. (2014). Plastics Used in Medical Devices. Handbook of Polymer Applications in Medicine and Medical Devices, 21–53. https://doi.org/10.1016/b978-0-323-22805-3.00003-7
  • [29] Levy, Y., Paz, A., Yosef, R. B., Corn, B. W., Vaisman, B., Shuhat, S., et al. (2009). Biodegradable Inflatable Balloon for Reducing Radiation Adverse Effects in Prostate Cancer. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(2), 855–867. https://doi.org/10.1002/jbm.b.31467
  • [30] Melchert, C., Gez, E., Bohlen, G., Scarzello, G., Koziol, I., Anscher, M., et al. (2013). Interstitial Biodegradable Balloon for Reduced Rectal Dose During Prostate Radiotherapy: Results of a Virtual Planning Investigation Based on the Pre- and Post-Implant Imaging Data of an International Multicenter Study. Radiotherapy and Oncology, 106(2); 210–214. https://doi.org/10.1016/j.radonc.2013.01.007
  • [31] Langelaar, M. (2016). Topology optimization of 3D self-supporting structures for additive manufacturing. Additive manufacturing, 12; 60-70.
Year 2023, , 205 - 212, 30.09.2023
https://doi.org/10.22399/ijcesen.1307070

Abstract

Project Number

FLO-2023-5647

References

  • [1] Weisstein, E. W. (n.d.). Eric Weisstein’s World of Physics. Eric Weisstein’s World of Physics. https://scienceworld.wolfram.com/physics/
  • [2] Extremely Low-Frequency Fields. (2007). World Health Organization.
  • [3] Shah, D. J., Sachs, R. K., & Wilson, D. J. (2012). Radiation-Induced Cancer: A Modern View. The British Journal of Radiology. 85:1020. https://doi.org/10.1259/bjr/25026140
  • [4] Ng, K.H. (2003). Non-Ionizing Radiations – Sources, Biological Effects, Emissions, and Exposures.
  • [5] Hacıosmanoğlu, T. (2017). Natural and Artificial Radiation Sources and Personal Dose Additives. Nuclear Medicine Seminars, 3(3); 166–171. https://doi.org/10.4274/nts.2017.017
  • [6] Latarjet, R., & Jagger, J. (1995). Rads and Grays: Becquerels and Curies. Radiation Research, 141(1); 105. https://doi.org/10.2307/3579098
  • [7] Yeyin, N. (2015). Biological Effects of Radiation. Nuclear Medicine Seminars, 1(3); 139–143. https://doi.org/10.4274/nts.002
  • [8] Pearce, M. S., Salotti, J. A., Little, M. P., McHugh, K., Lee, C., Kim, K. P. & et al. (2012). Radiation Exposure From CT Scans in Childhood and Subsequent Risk of Leukaemia and Brain Tumours: A Retrospective Cohort Study. The Lancet, 380(9840); 499–505. https://doi.org/10.1016/s0140-6736(12)60815-0
  • [9] Kastan, M. B., & Bartek, J. (2004). Cell-Cycle Checkpoints and Cancer. Nature, 432(7015); 316–323. https://doi.org/10.1038/nature03097
  • [10] Delaney, G., Jacob, S., Featherstone, C., & Barton, M. (2005). The Role of Radiotherapy in Cancer Treatment. Cancer, 104(6); 1129–1137. https://doi.org/10.1002/cncr.21324
  • [11] Mayer, C., Gasalberti, D. P., & Kumar, A. (2023). Brachytherapy. In StatPearls. StatPearls Publishing.
  • [12] Paunesku, T., & Woloschak, G. E. (2017). Future Directions of Intraoperative Radiation Therapy: A Brief Review. Frontiers in Oncology, 7. https://doi.org/10.3389/fonc.2017.00300
  • [13] Abe, M., & Takahashi, M. (1981). Intraoperative Radiotherapy: The Japanese Experience. International Journal of Radiation Oncology*Biology*Physics, 7(7); 863–868. https://doi.org/10.1016/0360-3016(81)90001-8
  • [14] Kyrgias, G., Hajiioannou, J., Tolia, M., Kouloulias, V., Lachanas, V., Skoulakis, C., et al. (2016). Intraoperative Radiation Therapy (IORT) in Head and Neck Cancer. Medicine, 95(50). https://doi.org/10.1097/md.0000000000005035
  • [15] Harris, E. E., & Small, W. (2017). Intraoperative Radiotherapy for Breast Cancer. Frontiers in Oncology, 7. https://doi.org/10.3389/fonc.2017.00317
  • [16] Akboru, M. H., Dincer, S. T., & Gursel, O. K. (2014). Intraoperative Radiotherapy. The Medical Journal of Okmeydani Training and Research Hospital, 29(Supplement 1); 25–34. https://doi.org/10.5222/otd.supp1.2013.025
  • [17] Şahin, K., & Turan, B. O. (2018). Comparative Analysis of 3D Printer Technologies. Stratejik ve Sosyal Araştırmalar Dergisi, 2(2); 97–116. https://doi.org/10.30692/sisad.441648
  • [18] Nielsen, A. V., Beauchamp, M. J., Nordin, G. P., & Woolley, A. T. (2020). 3D Printed Microfluidics. Annual review of analytical chemistry (Palo Alto, Calif.), 13(1); 45–65. https://doi.org/10.1146/annurev-anchem-091619-102649
  • [19] Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A Review on the Fused Deposition Modeling (FDM) 3D Printing: Filament Processing, Materials, and Printing Parameters. Open Engineering, 11(1); 639–649. https://doi.org/10.1515/eng-2021-0063
  • [20] Pakkanen, J., Manfredi, D., Minetola, P., & Iuliano, L. (2017). About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing. Sustainable Design and Manufacturing 2017; 776–785. https://doi.org/10.1007/978-3-319-57078-5_73
  • [21] Joseph Arockiam, A., Karthikeyan Subramanian, Padmanabhan, R. G., Rajeshkumar Selvaraj, Dilip Kumar Bagal, & Rajesh, S. (2022). A Review on PLA with Different Fillers Used as a Filament in 3D Printing. Materials Today: Proceedings, 50;2057–2064. https://doi.org/10.1016/j.matpr.2021.09.413
  • [22] Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Comprehensive Reviews in Food Science and Food Safety, 9(5); 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
  • [23] Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review. Advanced Drug Delivery Reviews, 107; 367–392. https://doi.org/10.1016/j.addr.2016.06.012
  • [24] Crow S. (1993). Sterilization processes. Meeting the demands of today's health care technology. The Nursing Clinics of North America, 28(3); 687–695.
  • [25] Oth, O., Dauchot, C., Orellana, M., & Glineur, R. (2019). How to sterilize 3D-printed objects for surgical use? An evaluation of the volumetric deformation of 3D-printed GENIOPLASTY Guide in PLA and PETG after sterilization by low-temperature hydrogen peroxide gas plasma. The Open Dentistry Journal, 13(1); 410–417. https://doi.org/10.2174/1874210601913010410
  • [26] Perego, G., Cella, G. D., & Bastioli, C. (1996). Effect of Molecular Weight and Crystallinity on Poly(lactic acid) Mechanical Properties. Journal of Applied Polymer Science, 59(1); 37–43. https://doi.org/10.1002/(sici)1097-4628(19960103)59:1<37::aid-app6>3.0.co;2-n
  • [27] Van de Velde, K., & Kiekens, P. (2002). Biopolymers: Overview of Several Properties and Consequences on Their Applications. Polymer Testing, 21(4); 433–442. https://doi.org/10.1016/s0142-9418(01)00107-6
  • [28] McKeen, L. W. (2014). Plastics Used in Medical Devices. Handbook of Polymer Applications in Medicine and Medical Devices, 21–53. https://doi.org/10.1016/b978-0-323-22805-3.00003-7
  • [29] Levy, Y., Paz, A., Yosef, R. B., Corn, B. W., Vaisman, B., Shuhat, S., et al. (2009). Biodegradable Inflatable Balloon for Reducing Radiation Adverse Effects in Prostate Cancer. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 91B(2), 855–867. https://doi.org/10.1002/jbm.b.31467
  • [30] Melchert, C., Gez, E., Bohlen, G., Scarzello, G., Koziol, I., Anscher, M., et al. (2013). Interstitial Biodegradable Balloon for Reduced Rectal Dose During Prostate Radiotherapy: Results of a Virtual Planning Investigation Based on the Pre- and Post-Implant Imaging Data of an International Multicenter Study. Radiotherapy and Oncology, 106(2); 210–214. https://doi.org/10.1016/j.radonc.2013.01.007
  • [31] Langelaar, M. (2016). Topology optimization of 3D self-supporting structures for additive manufacturing. Additive manufacturing, 12; 60-70.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Öykü Yüzer 0009-0001-0387-864X

Betül Özer 0009-0007-2299-0091

Salih Enes Özdel 0009-0004-0951-8102

Osman Günay 0000-0003-0760-554X

Project Number FLO-2023-5647
Early Pub Date August 14, 2023
Publication Date September 30, 2023
Submission Date May 30, 2023
Acceptance Date July 13, 2023
Published in Issue Year 2023

Cite

APA Yüzer, Ö., Özer, B., Özdel, S. E., Günay, O. (2023). Personalized Intraoperative Radiotherapy Balloon Applicator Design and Production With 3D Printer. International Journal of Computational and Experimental Science and Engineering, 9(3), 205-212. https://doi.org/10.22399/ijcesen.1307070