Research Article
BibTex RIS Cite

Investigation of compatibility of lipase with commercial detergents, surfactants and oxidizing agent as a detergent additive

Year 2022, , 33 - 38, 06.07.2022
https://doi.org/10.32571/ijct.1085417

Abstract

Herein, it is aimed to perform some commercial liquid and solid laundry detergents, surfactants, oxidizing agent and pH/temperature studies of lipase from porcine pancreas. For this, optimum pH and temperatures of lipase were investigated in the range of pH 5-13 and temperature 30-80°C. The enzyme stability and compatibility were evaluated in the presence of 8 commercial laundry detergents, triton X-100, tween 20, tween 80, tergitol, sodium deoxycolate, sodium dodecyl sulfate and oxidizing agent H202 for 1 h at 40°C. Optimum pH and temperatures of enzymes was recorded pH 10 and 40°C, respectively. The findings revealed that lipase was generally stable in detergents and increased by more than 20% in liquid detergent 1 and 3 compared to the control. In addition, enzyme in triton X-100, tween 20, tween 80, and tergitol at 5%(v/v) concentration exhibited about 237%, 281%, 207% and 237% relative activities and activity at 5% H202(v/v) was inhibited by only about 13%. Consequently, pancreatic lipase can be a good choice in enzyme immobilization studies and various biotechnological purposes, especially in detergent applications.

References

  • Mendes, A.A.; Oliveira, P.C.; de Castro, H. F. J. Mol. Catal. B Enzym. 2012, 78, 119-134.
  • Contesini, F.J.; Lopes, D. B.; Macedo, G. A.; da Graça Nascimento, M.; de Oliveira Carvalho, P. J. Mol. Catal. B Enzym. 2010, 67(3-4), 163-171.
  • Javed, S.; Azeem, F.; Hussain, S.; Rasul, I.; Siddique, M.H.; Riaz, M.; Afzal, M.; Kouser, A. Nadeem, H. Prog. Biophys. Mol. Biol. 2018, 132, 23-34.
  • Ray, A. Asian J. Pharm. Sci. 2012, 2(2), 33-37.
  • Al-Ghanayem, A.A.; Joseph, B. Appl. Microbiol. Biotechnol. 2020, 104(7), 2871-2882.
  • Houde, A.; Kademi, A.; Leblanc, D. Appl. Biochem. Biotechnol. 2004, 118(1), 155-170.
  • Contesini, F.J.; Davanço, M.G.; Borin, G.P.; Vanegas, K.G.; Cirino, J.P.G.; Melo, R.R.D.; Mortensen, U.E.; Hildén, K.; Campos, D.R.; Carvalho, P.D.O. Catalysts, 2020, 10(9), 1032.
  • Gulmez, C.; Atakisi, O.; Dalginli, K.Y.; Atakisi, E. Int. J. Biol. Macromol. 2018, 108, 436-443.
  • Abol-Fotouh, D.; AlHagar, O.E.; Hassan, M.A. Int. J. Biol. Macromol. 2021, 181, 125-135.
  • Jaeger, K.E.; Ransac, S.; Dijkstra, B.W.; Colson, C.; Heuvel, M.; Misset, O. FEMS Microbiol. Rev. 1994, 15, 29-63.
  • Bernal, C.; Rodriguez, K.; Martinez, R. Biotechnol. Adv. 2018, 36(5), 1470-1480.
  • Altinkaynak, C.; Gulmez, C.; Atakisi, O.; Ozdemir, N. Int. J. Biol. Macromol. 2020, 164, 162-171.
  • Almeida, F.L.; Prata, A.S.; Forte, M.B. Biofuels Bioprod. Biorefining. 2021, 16, 587-608.
  • Vasconcelos, A.; Silva, C.J.; Schroeder, M.; Guebitz, G.M.; Cavaco-Paulo, A. Biotechnol. Lett. 2006, 28(10), 725-731.
  • Minteer, S.D. Cell-free biotechnologies. 2006, 433-448.
  • Winkler, U.K.; Stuckman, M. J. Bacteriol. Res. 1979, 138, 663-70.
  • Bradford, M.M. Anal. Biochem. 1976, 72, 248-252.
  • Rahman, R.; Geok, L.; Basri, M.; Salleh, A. Enzyme Microb. Technol. 2006, 39, 1484–1491.
  • Phukon, L.C.; Chourasia, R.; Kumari, M.; Godan, T.K.; Sahoo, D.; Parameswaran, B.; Rai, A.K. Bioresour. Technol. 2020, 309, 123352.
  • Akmoussi-Toumi, S.; Khemili-Talbi, S.; Ferioune, I.; Kebbouche-Gana, S. Int. J. Biol. Macromol. 2018, 116, 817-830.
  • Hasan, F.; Shah, A.A.; Javed, S.; Hameed, A. Afr. J. Biotechnol. 2010, 9(31), 4836-4844.
  • Gurkok, S.; Ozdal, M. Protein Expr. Purif. 2021, 180, 105819.
  • Zhao, J., Liu, S., Gao, Y., Ma, M., Yan, X., Cheng, D., Wan, D.; Zeng, Z.; Yu, P.; Gong, D. Int. J. Biol. Macromol. 2021, 176, 126-136.
  • Jurado, E.; Garcia-Roman, M.; Luzon, G.; Altmajer-Vaz, D.; Jiménez-Pérez, J.L. Ind. Eng. Chem. Res. 2011, 50(20), 11502-11510.
  • Saraswat, R.; Verma, V.; Sistla, S.; Bhushan, I. Electron. J. Biotechnol. 2017, 30, 33-38.
  • Grbavčić, S.; Bezbradica, D.; Izrael-Živković, L.; Avramović, N.; Milosavić, N.; Karadžić, I.; Knežević-Jugović, Z. Bioresour. Technol. 2011, 102(24), 11226-11233.
  • Daoud, L.; Kamoun, J.; Ali, M.B.; Jallouli, R.; Bradai, R.; Mechichi, T.; Gargouri, Y.; Ali, Y.B.; Aloulou, A. Int. J. Biol. Macromol. 2013, 57, 232-237.
  • Zadymova, N.M.; Yampol’skaya, G.P.; Filatova, L.Y. Colloid J. 2006, 68(2), 162-172.
  • Bajpai, D. J. Oleo Sci. 2007, 56(7), 327-340.
  • Carpenter, J.F.; Chang, B.S.; Garzon-Rodriguez, W.; Randolph, T.W. 2002, 109-133.
  • Santos, S.F.; Zanette, D.; Fischer, H.; Itri, R. J. Colloid Interface Sci. 2003, 262(2), 400-408.
  • Salihu, A.; Alam, M.Z. Solvent tolerant lipases: a review. Process Biochem. 2015, 50(1), 86-96.
Year 2022, , 33 - 38, 06.07.2022
https://doi.org/10.32571/ijct.1085417

Abstract

Bu çalışmada domuz pankreasından elde edilen lipazın ticari sıvı ve katı deterjanlar, yüzey aktif maddeler, oksitleyici ajan ve pH/sıcaklık çalışmalarının gerçekleştirilmesi amaçlanmıştır. Bu amaçla enzimin optimum pH ve sıcaklık çalışmaları sırasıyla pH 5-13 ve sıcaklık 30-80°C aralıklarında araştırılmıştır. Enzimin 8 adet ticari çamaşır deterjanı, triton X-100, tween 20, tween 80, tergitol, sodyum deoksikolat, sodyum dodesil sülfat ve oksitleyici ajan H202 varlığında 1 saat ve 40°C’de stabilite ve uyumluluğu değerlendirildi. Elde edilen bulgulara göre lipaz deterjanlar içerisinde genel olarak stabildir ve kontrole göre sıvı deterjan 1 ve 3 içerisinde aktivitelerini %20’den fazla artırmıştır. Aynı zamanda enzim 5% (v/v) konsantrasyonda triton X-100, tween 20, tween 80, and tergitol varlığında sırasıyla yaklaşık 237%, 281%, 207% and 237% relative aktivite göstermiştir. Enzim aktivitesi %5 (v/v) H202 konsantrayonunda sadece yaklaşık %13 inhibe olmuştur. Sonuç olarak; pankreatik lipaz, enzim immobilizasyon çalışmaları ve özellikle deterjan uygulamaları olmak üzere çeşitli biyoteknolojik amaçlar için iyi bir seçenek olabilir.

References

  • Mendes, A.A.; Oliveira, P.C.; de Castro, H. F. J. Mol. Catal. B Enzym. 2012, 78, 119-134.
  • Contesini, F.J.; Lopes, D. B.; Macedo, G. A.; da Graça Nascimento, M.; de Oliveira Carvalho, P. J. Mol. Catal. B Enzym. 2010, 67(3-4), 163-171.
  • Javed, S.; Azeem, F.; Hussain, S.; Rasul, I.; Siddique, M.H.; Riaz, M.; Afzal, M.; Kouser, A. Nadeem, H. Prog. Biophys. Mol. Biol. 2018, 132, 23-34.
  • Ray, A. Asian J. Pharm. Sci. 2012, 2(2), 33-37.
  • Al-Ghanayem, A.A.; Joseph, B. Appl. Microbiol. Biotechnol. 2020, 104(7), 2871-2882.
  • Houde, A.; Kademi, A.; Leblanc, D. Appl. Biochem. Biotechnol. 2004, 118(1), 155-170.
  • Contesini, F.J.; Davanço, M.G.; Borin, G.P.; Vanegas, K.G.; Cirino, J.P.G.; Melo, R.R.D.; Mortensen, U.E.; Hildén, K.; Campos, D.R.; Carvalho, P.D.O. Catalysts, 2020, 10(9), 1032.
  • Gulmez, C.; Atakisi, O.; Dalginli, K.Y.; Atakisi, E. Int. J. Biol. Macromol. 2018, 108, 436-443.
  • Abol-Fotouh, D.; AlHagar, O.E.; Hassan, M.A. Int. J. Biol. Macromol. 2021, 181, 125-135.
  • Jaeger, K.E.; Ransac, S.; Dijkstra, B.W.; Colson, C.; Heuvel, M.; Misset, O. FEMS Microbiol. Rev. 1994, 15, 29-63.
  • Bernal, C.; Rodriguez, K.; Martinez, R. Biotechnol. Adv. 2018, 36(5), 1470-1480.
  • Altinkaynak, C.; Gulmez, C.; Atakisi, O.; Ozdemir, N. Int. J. Biol. Macromol. 2020, 164, 162-171.
  • Almeida, F.L.; Prata, A.S.; Forte, M.B. Biofuels Bioprod. Biorefining. 2021, 16, 587-608.
  • Vasconcelos, A.; Silva, C.J.; Schroeder, M.; Guebitz, G.M.; Cavaco-Paulo, A. Biotechnol. Lett. 2006, 28(10), 725-731.
  • Minteer, S.D. Cell-free biotechnologies. 2006, 433-448.
  • Winkler, U.K.; Stuckman, M. J. Bacteriol. Res. 1979, 138, 663-70.
  • Bradford, M.M. Anal. Biochem. 1976, 72, 248-252.
  • Rahman, R.; Geok, L.; Basri, M.; Salleh, A. Enzyme Microb. Technol. 2006, 39, 1484–1491.
  • Phukon, L.C.; Chourasia, R.; Kumari, M.; Godan, T.K.; Sahoo, D.; Parameswaran, B.; Rai, A.K. Bioresour. Technol. 2020, 309, 123352.
  • Akmoussi-Toumi, S.; Khemili-Talbi, S.; Ferioune, I.; Kebbouche-Gana, S. Int. J. Biol. Macromol. 2018, 116, 817-830.
  • Hasan, F.; Shah, A.A.; Javed, S.; Hameed, A. Afr. J. Biotechnol. 2010, 9(31), 4836-4844.
  • Gurkok, S.; Ozdal, M. Protein Expr. Purif. 2021, 180, 105819.
  • Zhao, J., Liu, S., Gao, Y., Ma, M., Yan, X., Cheng, D., Wan, D.; Zeng, Z.; Yu, P.; Gong, D. Int. J. Biol. Macromol. 2021, 176, 126-136.
  • Jurado, E.; Garcia-Roman, M.; Luzon, G.; Altmajer-Vaz, D.; Jiménez-Pérez, J.L. Ind. Eng. Chem. Res. 2011, 50(20), 11502-11510.
  • Saraswat, R.; Verma, V.; Sistla, S.; Bhushan, I. Electron. J. Biotechnol. 2017, 30, 33-38.
  • Grbavčić, S.; Bezbradica, D.; Izrael-Živković, L.; Avramović, N.; Milosavić, N.; Karadžić, I.; Knežević-Jugović, Z. Bioresour. Technol. 2011, 102(24), 11226-11233.
  • Daoud, L.; Kamoun, J.; Ali, M.B.; Jallouli, R.; Bradai, R.; Mechichi, T.; Gargouri, Y.; Ali, Y.B.; Aloulou, A. Int. J. Biol. Macromol. 2013, 57, 232-237.
  • Zadymova, N.M.; Yampol’skaya, G.P.; Filatova, L.Y. Colloid J. 2006, 68(2), 162-172.
  • Bajpai, D. J. Oleo Sci. 2007, 56(7), 327-340.
  • Carpenter, J.F.; Chang, B.S.; Garzon-Rodriguez, W.; Randolph, T.W. 2002, 109-133.
  • Santos, S.F.; Zanette, D.; Fischer, H.; Itri, R. J. Colloid Interface Sci. 2003, 262(2), 400-408.
  • Salihu, A.; Alam, M.Z. Solvent tolerant lipases: a review. Process Biochem. 2015, 50(1), 86-96.
There are 32 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Canan Gülmez 0000-0003-3253-1407

Onur Atakisi 0000-0003-1183-6076

Publication Date July 6, 2022
Published in Issue Year 2022

Cite

APA Gülmez, C., & Atakisi, O. (2022). Investigation of compatibility of lipase with commercial detergents, surfactants and oxidizing agent as a detergent additive. International Journal of Chemistry and Technology, 6(1), 33-38. https://doi.org/10.32571/ijct.1085417
AMA Gülmez C, Atakisi O. Investigation of compatibility of lipase with commercial detergents, surfactants and oxidizing agent as a detergent additive. Int. J. Chem. Technol. July 2022;6(1):33-38. doi:10.32571/ijct.1085417
Chicago Gülmez, Canan, and Onur Atakisi. “Investigation of Compatibility of Lipase With Commercial Detergents, Surfactants and Oxidizing Agent As a Detergent Additive”. International Journal of Chemistry and Technology 6, no. 1 (July 2022): 33-38. https://doi.org/10.32571/ijct.1085417.
EndNote Gülmez C, Atakisi O (July 1, 2022) Investigation of compatibility of lipase with commercial detergents, surfactants and oxidizing agent as a detergent additive. International Journal of Chemistry and Technology 6 1 33–38.
IEEE C. Gülmez and O. Atakisi, “Investigation of compatibility of lipase with commercial detergents, surfactants and oxidizing agent as a detergent additive”, Int. J. Chem. Technol., vol. 6, no. 1, pp. 33–38, 2022, doi: 10.32571/ijct.1085417.
ISNAD Gülmez, Canan - Atakisi, Onur. “Investigation of Compatibility of Lipase With Commercial Detergents, Surfactants and Oxidizing Agent As a Detergent Additive”. International Journal of Chemistry and Technology 6/1 (July 2022), 33-38. https://doi.org/10.32571/ijct.1085417.
JAMA Gülmez C, Atakisi O. Investigation of compatibility of lipase with commercial detergents, surfactants and oxidizing agent as a detergent additive. Int. J. Chem. Technol. 2022;6:33–38.
MLA Gülmez, Canan and Onur Atakisi. “Investigation of Compatibility of Lipase With Commercial Detergents, Surfactants and Oxidizing Agent As a Detergent Additive”. International Journal of Chemistry and Technology, vol. 6, no. 1, 2022, pp. 33-38, doi:10.32571/ijct.1085417.
Vancouver Gülmez C, Atakisi O. Investigation of compatibility of lipase with commercial detergents, surfactants and oxidizing agent as a detergent additive. Int. J. Chem. Technol. 2022;6(1):33-8.