Research Article
BibTex RIS Cite

Assessment of Greenhouse Gases Emissions from Dam Reservoirs: the Case of Tuzluca Dam

Year 2024, , 170 - 179, 31.12.2024
https://doi.org/10.32571/ijct.1549692

Abstract

It is a known fact that large dam projects built to serve important purposes such as electricity generation, irrigation drinking water supply, and flood control cause greenhouse gases emissions due to the areas they flood. In this study, the greenhouse gases emission impacts of the Tuzluca Dam and Hydroelectric Power Plant (HPP) project, planned to be constructed in the Iğdır province of Turkey, were evaluated. Analyses conducted using the G-res tool, developed by the United Nations Educational, Scientific and Cultural Organization (UNESCO) and the International Hydropower Association (IHA), estimated that the Tuzluca Dam and HPP project will emit 2,228 tCO2e of greenhouse gases annually once the dam begins to hold water. In accordance with the guidelines of the Intergovernmental Panel on Climate Change (IPCC), it is predicted that when emissions occurring before the dam and during its construction are included, the net greenhouse gases emissions of the project will be -902 gCO2e per square meter annually. The results obtained from this study were found to be consistent with similar studies in the literature.

References

  • 1.Jansen, R.B. Advanced dam engineering for design, construction, and rehabilitation, Van Nostrand Reinhold Pub. New York, 1988.
  • 2. Berkün, M. Su Kaynakları Mühendisliği, Birsen Yayınevi, İstanbul, 2005.
  • 3. Baxter, R.M. Ann. Rev. Ecol. Syst. 2005, 8, 255-83.
  • 4. McCartney, M. Water Policy. 2009, 11(1), 121-139.
  • 5. Fearnside, P.M. Journal of the Geographical Society of Berlin. 2015, 148(1), 14-26.
  • 6. Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Liu, Q., Yin, Z., Dai, J., Yin, D., Liang, J., Ye, S. 2019. Journal of Cleaner Production. 2019, 221, 480-489.
  • 7. Zhang, X., Fang, C., Wang, Y., Lou, X., Su, Y., Huang, D. Sustainability. 2022, 14, 5974.
  • 8. Akgün, Ç. and Nas S.S. Barajların çevresel etkileri, Teknolojideki Güncel Gelişmeler ve Uygulamaları: Çevresel Etkilerden Yapay Zekaya; Güldal, S.; İksad Pub. Ankara, 2024; pp 5-22.
  • 9. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 659–740, ISBN 978-1-107-66182-0.
  • 10. Myhre, G., et al. Anthropogenic and Natural Radiative Forcing. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, USA, p. 659-708. 2013.
  • 11. Deemer, R.,. Harrıson, J., Lı, S., Beaulıeu, J., Delsontro, T., Barros, N., Bezerra-Neto, J., Powers, S., Dos Santos, M., and Vonk, J. BioScience. 2016, 66, 11, 949-964.
  • 12. Fearnside, P. M., Environment Management. 1999, 24(4), 485–495.
  • 13. Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X. Sun, B. Acta Ecologica Sinica. 2014, 34, 204–212.
  • 14. Bastviken, D., Tranvik, L., Downing, J., Crill, P. and Enrich-Prast, A. Science. 2011, 331, 50.
  • 15. Demarty, M. and Bastien, J. Energy Policy, 2011, 39, 4197–4206.
  • 16. Almeida, R.M., Shi, Q., Gomes-Selman, J.M., Wu, X., Xue, Y., Angarita, H., Barros, N., Forsberg, B.R., García-Villacorta, R., Hamilton, S.K., Melack, J.M., Montoya, M., Perez, G., Sethi, S.A., Gomes, C.P., Flecker, A.S. Nat. Commun. 2019, 10, 4281.
  • 17. Gotsiridze, E. Assessment of greenhouse gas emissions from hydropower projects using G-RES tool. Masters Thesis, Norwegian University of Science and Technology Faculty of Engineering, Norway, 2023.
  • 18. Fearnside, P.M. Climatic Change. 2004, 66, 1–8. 19. Farrer, C. Hydroelectric eeservoirs – the carbon dioxide and methane emissions of a “carbon free” energy source. Masters Thesis, Swiss Federal Institute of Technology, Zurich, 2007.
  • 20. DelSontro, T., Kunz, M., Kempter, T., Weuest, A., Wehrli, B. and Senn D. Environ. Sci. Technol. 2011, 45, 9866–9873.
  • 21. Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X., Sun, B. Acta Ecologica Sinica, 2014, 34, 204 - 212.
  • 22. Ion, V. and Ene, A. Sustainability. 2021, 13, 11621.
  • 23. Guerin, F. Emissions de Gaz a Effet de Serre (CO2, CH4) par une Retenue de Barrage Hydroelectrique en Zone Tropicale (Petit-Saut, Guyane Francaise): Experimentation et Modelization. Ph.D. Dissertion, l’Université Paul Sabatier. Toulouse, 2006.
  • 24. Kumar, A., T. Schei, A. Ahenkorah, R. Caceres Rodriguez, J.-M. Devernay, M. Freitas, D. Hall, Å. Killingtveit, Z. Liu. Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2011, 437-496.
  • 25. Fearnside, P.M. Water, Air, and Soil Pollution, 2002, 133, 69–96.
  • 26. Tremblay, A. and Bastien, J. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 2009, 30, 866-869.
  • 27. Kemenes, A., Forsberg, B.R., Melack, J.M. Journal Of Geophysıcal Research, 2011, 116, G03004.
  • 28. Kumar, A. and Sharma, M.P. Human And Ecologıcal Risk Assessment, 2015, 0, 1-15.
  • 29. Jiang, T., Shen, Z., Liu, Y. and Hou, Y. Sustainability, 2018, 10, 2018.
  • 30. Liana-Ioana Vuta et. Al. IOP Conf. Ser.: Earth Environ. Sci. 2023, 1136, 012061
  • 31. Min, K., Kim, S., Chung, S. Greenhouse Gas Emissions and Footprint Analysis of Large- Scale Multi-Purpose Dam Reservoirs in Temperate Climates: Case Study from South Korea. Available at SSRN: https://ssrn.com/abstract=4778125
  • 32. Prairie, Y.T.; Alm, J.; Harby, A.; Mercier-Blais, S.; Nahas, R. The GHG Reservoir Tool (Gres) Technical documentation v2.1 (2019-08-21).UNESCO/IHA research project on the GHG status of freshwater reservoirs; Joint publication of the UNESCO Chair in Global Environmental Change and the International Hydropower Association: London, UK, 2017. Available online: https://www.hydropower.org/publications/the-ghg-reservoir-tool-g-res-technical-documentation
  • 33. Dumitran, G., Vuță, L., Neagoe, A., Tică, E. and Popa, B. Carbon footprint of reservoirs in Bucharest. E3S Web of Conferences 404, 02001, 2023.
  • 34. Dolsar ve EİE. Aşağı Aras Havzası Tuzluca Barajı ve Hidroelektrik Santrali Projesi Yapılabilirlik Raporu, Elektrik İşleri Etüt İdaresi ve Dolsar Müh. Ltd. Şti., 2004, Ankara, 298s.
  • 35. AK-TEL. Aşağı Aras Havzası Tuzluca Barajı ve HES Projesi Nihai Çed Raporu, AK-TEL Mühendislik Eğt. Tur. Gd. San. Tic. Ltd. Şti., Ankara, 2015, 166s.
  • 36. Louis, V.L., Kelly, C.A., Duchemın, E., Rudd, J.W.M., Rosenberg D.M. BioScience, 2000, 50, 766–775.
  • 37. Zhao, Y., Nielsen, C. and Elroy, M. Atmospheric Environment, 2012, 59, 214-223.
  • 38. Bansal, S., Chakraborty, M., Katyal, D., Garg, J.K. Applied Ecology and Environmental Research, 2015, 13. 597-613.
Year 2024, , 170 - 179, 31.12.2024
https://doi.org/10.32571/ijct.1549692

Abstract

References

  • 1.Jansen, R.B. Advanced dam engineering for design, construction, and rehabilitation, Van Nostrand Reinhold Pub. New York, 1988.
  • 2. Berkün, M. Su Kaynakları Mühendisliği, Birsen Yayınevi, İstanbul, 2005.
  • 3. Baxter, R.M. Ann. Rev. Ecol. Syst. 2005, 8, 255-83.
  • 4. McCartney, M. Water Policy. 2009, 11(1), 121-139.
  • 5. Fearnside, P.M. Journal of the Geographical Society of Berlin. 2015, 148(1), 14-26.
  • 6. Wu, H., Chen, J., Xu, J., Zeng, G., Sang, L., Liu, Q., Yin, Z., Dai, J., Yin, D., Liang, J., Ye, S. 2019. Journal of Cleaner Production. 2019, 221, 480-489.
  • 7. Zhang, X., Fang, C., Wang, Y., Lou, X., Su, Y., Huang, D. Sustainability. 2022, 14, 5974.
  • 8. Akgün, Ç. and Nas S.S. Barajların çevresel etkileri, Teknolojideki Güncel Gelişmeler ve Uygulamaları: Çevresel Etkilerden Yapay Zekaya; Güldal, S.; İksad Pub. Ankara, 2024; pp 5-22.
  • 9. IPCC Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 659–740, ISBN 978-1-107-66182-0.
  • 10. Myhre, G., et al. Anthropogenic and Natural Radiative Forcing. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK and New York, USA, p. 659-708. 2013.
  • 11. Deemer, R.,. Harrıson, J., Lı, S., Beaulıeu, J., Delsontro, T., Barros, N., Bezerra-Neto, J., Powers, S., Dos Santos, M., and Vonk, J. BioScience. 2016, 66, 11, 949-964.
  • 12. Fearnside, P. M., Environment Management. 1999, 24(4), 485–495.
  • 13. Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X. Sun, B. Acta Ecologica Sinica. 2014, 34, 204–212.
  • 14. Bastviken, D., Tranvik, L., Downing, J., Crill, P. and Enrich-Prast, A. Science. 2011, 331, 50.
  • 15. Demarty, M. and Bastien, J. Energy Policy, 2011, 39, 4197–4206.
  • 16. Almeida, R.M., Shi, Q., Gomes-Selman, J.M., Wu, X., Xue, Y., Angarita, H., Barros, N., Forsberg, B.R., García-Villacorta, R., Hamilton, S.K., Melack, J.M., Montoya, M., Perez, G., Sethi, S.A., Gomes, C.P., Flecker, A.S. Nat. Commun. 2019, 10, 4281.
  • 17. Gotsiridze, E. Assessment of greenhouse gas emissions from hydropower projects using G-RES tool. Masters Thesis, Norwegian University of Science and Technology Faculty of Engineering, Norway, 2023.
  • 18. Fearnside, P.M. Climatic Change. 2004, 66, 1–8. 19. Farrer, C. Hydroelectric eeservoirs – the carbon dioxide and methane emissions of a “carbon free” energy source. Masters Thesis, Swiss Federal Institute of Technology, Zurich, 2007.
  • 20. DelSontro, T., Kunz, M., Kempter, T., Weuest, A., Wehrli, B. and Senn D. Environ. Sci. Technol. 2011, 45, 9866–9873.
  • 21. Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X., Sun, B. Acta Ecologica Sinica, 2014, 34, 204 - 212.
  • 22. Ion, V. and Ene, A. Sustainability. 2021, 13, 11621.
  • 23. Guerin, F. Emissions de Gaz a Effet de Serre (CO2, CH4) par une Retenue de Barrage Hydroelectrique en Zone Tropicale (Petit-Saut, Guyane Francaise): Experimentation et Modelization. Ph.D. Dissertion, l’Université Paul Sabatier. Toulouse, 2006.
  • 24. Kumar, A., T. Schei, A. Ahenkorah, R. Caceres Rodriguez, J.-M. Devernay, M. Freitas, D. Hall, Å. Killingtveit, Z. Liu. Hydropower. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2011, 437-496.
  • 25. Fearnside, P.M. Water, Air, and Soil Pollution, 2002, 133, 69–96.
  • 26. Tremblay, A. and Bastien, J. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 2009, 30, 866-869.
  • 27. Kemenes, A., Forsberg, B.R., Melack, J.M. Journal Of Geophysıcal Research, 2011, 116, G03004.
  • 28. Kumar, A. and Sharma, M.P. Human And Ecologıcal Risk Assessment, 2015, 0, 1-15.
  • 29. Jiang, T., Shen, Z., Liu, Y. and Hou, Y. Sustainability, 2018, 10, 2018.
  • 30. Liana-Ioana Vuta et. Al. IOP Conf. Ser.: Earth Environ. Sci. 2023, 1136, 012061
  • 31. Min, K., Kim, S., Chung, S. Greenhouse Gas Emissions and Footprint Analysis of Large- Scale Multi-Purpose Dam Reservoirs in Temperate Climates: Case Study from South Korea. Available at SSRN: https://ssrn.com/abstract=4778125
  • 32. Prairie, Y.T.; Alm, J.; Harby, A.; Mercier-Blais, S.; Nahas, R. The GHG Reservoir Tool (Gres) Technical documentation v2.1 (2019-08-21).UNESCO/IHA research project on the GHG status of freshwater reservoirs; Joint publication of the UNESCO Chair in Global Environmental Change and the International Hydropower Association: London, UK, 2017. Available online: https://www.hydropower.org/publications/the-ghg-reservoir-tool-g-res-technical-documentation
  • 33. Dumitran, G., Vuță, L., Neagoe, A., Tică, E. and Popa, B. Carbon footprint of reservoirs in Bucharest. E3S Web of Conferences 404, 02001, 2023.
  • 34. Dolsar ve EİE. Aşağı Aras Havzası Tuzluca Barajı ve Hidroelektrik Santrali Projesi Yapılabilirlik Raporu, Elektrik İşleri Etüt İdaresi ve Dolsar Müh. Ltd. Şti., 2004, Ankara, 298s.
  • 35. AK-TEL. Aşağı Aras Havzası Tuzluca Barajı ve HES Projesi Nihai Çed Raporu, AK-TEL Mühendislik Eğt. Tur. Gd. San. Tic. Ltd. Şti., Ankara, 2015, 166s.
  • 36. Louis, V.L., Kelly, C.A., Duchemın, E., Rudd, J.W.M., Rosenberg D.M. BioScience, 2000, 50, 766–775.
  • 37. Zhao, Y., Nielsen, C. and Elroy, M. Atmospheric Environment, 2012, 59, 214-223.
  • 38. Bansal, S., Chakraborty, M., Katyal, D., Garg, J.K. Applied Ecology and Environmental Research, 2015, 13. 597-613.
There are 37 citations in total.

Details

Primary Language English
Subjects Chemical Engineering (Other)
Journal Section Research Articles
Authors

Çağrı Akgün 0000-0002-7155-6191

Salim Serkan Nas 0000-0001-9054-4674

Early Pub Date December 9, 2024
Publication Date December 31, 2024
Submission Date September 13, 2024
Acceptance Date November 14, 2024
Published in Issue Year 2024

Cite

APA Akgün, Ç., & Nas, S. S. (2024). Assessment of Greenhouse Gases Emissions from Dam Reservoirs: the Case of Tuzluca Dam. International Journal of Chemistry and Technology, 8(2), 170-179. https://doi.org/10.32571/ijct.1549692
AMA Akgün Ç, Nas SS. Assessment of Greenhouse Gases Emissions from Dam Reservoirs: the Case of Tuzluca Dam. Int. J. Chem. Technol. December 2024;8(2):170-179. doi:10.32571/ijct.1549692
Chicago Akgün, Çağrı, and Salim Serkan Nas. “Assessment of Greenhouse Gases Emissions from Dam Reservoirs: The Case of Tuzluca Dam”. International Journal of Chemistry and Technology 8, no. 2 (December 2024): 170-79. https://doi.org/10.32571/ijct.1549692.
EndNote Akgün Ç, Nas SS (December 1, 2024) Assessment of Greenhouse Gases Emissions from Dam Reservoirs: the Case of Tuzluca Dam. International Journal of Chemistry and Technology 8 2 170–179.
IEEE Ç. Akgün and S. S. Nas, “Assessment of Greenhouse Gases Emissions from Dam Reservoirs: the Case of Tuzluca Dam”, Int. J. Chem. Technol., vol. 8, no. 2, pp. 170–179, 2024, doi: 10.32571/ijct.1549692.
ISNAD Akgün, Çağrı - Nas, Salim Serkan. “Assessment of Greenhouse Gases Emissions from Dam Reservoirs: The Case of Tuzluca Dam”. International Journal of Chemistry and Technology 8/2 (December 2024), 170-179. https://doi.org/10.32571/ijct.1549692.
JAMA Akgün Ç, Nas SS. Assessment of Greenhouse Gases Emissions from Dam Reservoirs: the Case of Tuzluca Dam. Int. J. Chem. Technol. 2024;8:170–179.
MLA Akgün, Çağrı and Salim Serkan Nas. “Assessment of Greenhouse Gases Emissions from Dam Reservoirs: The Case of Tuzluca Dam”. International Journal of Chemistry and Technology, vol. 8, no. 2, 2024, pp. 170-9, doi:10.32571/ijct.1549692.
Vancouver Akgün Ç, Nas SS. Assessment of Greenhouse Gases Emissions from Dam Reservoirs: the Case of Tuzluca Dam. Int. J. Chem. Technol. 2024;8(2):170-9.