Research Article
BibTex RIS Cite
Year 2019, , 61 - 66, 28.06.2019
https://doi.org/10.32571/ijct.549930

Abstract

References

  • 1. Liang, C.; Papadakis, G.; Luo, X. Comput. Fluids 2009, 38, 950-964.
  • 2. Hassanzadeh, R.; Sahin, B.; Ozgoren, M. Int. J. Comput. Fluid D. 2011, 25, 535-545.
  • 3. Breuer M.; Bernsdorf, M.; Zeiser, T.; Durst, T. Int. J. Heat Fluid Fl. 2000, 21, 186-196.
  • 4. Sen, S.; Mittal, S.; Biswas, G. Int. J. Numer. Meth. Fl. 2011, 67, 1160-1174.
  • 5. Puig-Aranega, A.; Burgos, J.; Cito, S.; Cuesta, I.; Saluena, C. Int. J. Comput. Fluid D. 2015, 29, 434-446.
  • 6. Dhiman, A.K.; Chhabra, R.P.; Eswaran, V. J. Non-Newton. Fluid Mech. 2008, 148, 141-150.
  • 7. Dhiman, A.K.; Chhabra, R.P.; Eswaran, V. J. Chem. Eng. Res. Des. 2006, 84, 300-310.
  • 8. Ehsan, I.; Mohammad, S.; Reza, N.; Ali, J. Int. J. Phys. Sci. 2012, 7, 988-1000.
  • 9. Nirmalkar, N., Chhabra R.P.; Poole R.J. J. Non-Newton. Fluid Mech. 2012, 171-172, 17–30.
  • 10. Phan-Thien, N.; Tanner, R.I. J. Non-Newton. Fluid Mech. 1977, 2, 353-365.
  • 11. Patankar, S.V.; Spalding, D.B. Int. J. Heat Mass Tran. 1972, 15, 1787.
  • 12. Versteeg H. K.; Malalasekera W. An introduction to computational fluid dynamics: The finite volume method, 2nd Edition, Prentice Hall, USA, 1995.
  • 13. Alves, M.A., Oliveira P.J.; Pinho F.T. Int. J. Numer. Meth. Fl. 2003, 4, 47-75.
  • 14. Tezel, G. B.; Yapici, K.; Uludag, Y. Period Polytech. Chem. Eng. 2019, 63, 190-199.
  • 15. Norouzi, M.; Varedi, S.R.; Zamani, M. Korea-Aust. Rheol. J. 2015, 27, 213-225.

Stress behaviours of viscoelastic flow around square cylinder

Year 2019, , 61 - 66, 28.06.2019
https://doi.org/10.32571/ijct.549930

Abstract

In this study, it is
aimed the numerically investigation of the flow of liner PTT
(Phan-Thien-Tanner) fluid, which is a viscoelastic fluid model over limited
square obstacle by finite volume method. The finite volume method has been used
for simultaneous solution of continuity, momentum and fluid model equations
with appropriate boundary conditions. The effects of the inertia  in terms of Reynolds number, Re, (0 < Re < 20) and the of elasticity 
in terms of Weissenberg number, We,
(1 < We < 15) of PTT flow  on vertical and shear stress areas are
examined in detail.

References

  • 1. Liang, C.; Papadakis, G.; Luo, X. Comput. Fluids 2009, 38, 950-964.
  • 2. Hassanzadeh, R.; Sahin, B.; Ozgoren, M. Int. J. Comput. Fluid D. 2011, 25, 535-545.
  • 3. Breuer M.; Bernsdorf, M.; Zeiser, T.; Durst, T. Int. J. Heat Fluid Fl. 2000, 21, 186-196.
  • 4. Sen, S.; Mittal, S.; Biswas, G. Int. J. Numer. Meth. Fl. 2011, 67, 1160-1174.
  • 5. Puig-Aranega, A.; Burgos, J.; Cito, S.; Cuesta, I.; Saluena, C. Int. J. Comput. Fluid D. 2015, 29, 434-446.
  • 6. Dhiman, A.K.; Chhabra, R.P.; Eswaran, V. J. Non-Newton. Fluid Mech. 2008, 148, 141-150.
  • 7. Dhiman, A.K.; Chhabra, R.P.; Eswaran, V. J. Chem. Eng. Res. Des. 2006, 84, 300-310.
  • 8. Ehsan, I.; Mohammad, S.; Reza, N.; Ali, J. Int. J. Phys. Sci. 2012, 7, 988-1000.
  • 9. Nirmalkar, N., Chhabra R.P.; Poole R.J. J. Non-Newton. Fluid Mech. 2012, 171-172, 17–30.
  • 10. Phan-Thien, N.; Tanner, R.I. J. Non-Newton. Fluid Mech. 1977, 2, 353-365.
  • 11. Patankar, S.V.; Spalding, D.B. Int. J. Heat Mass Tran. 1972, 15, 1787.
  • 12. Versteeg H. K.; Malalasekera W. An introduction to computational fluid dynamics: The finite volume method, 2nd Edition, Prentice Hall, USA, 1995.
  • 13. Alves, M.A., Oliveira P.J.; Pinho F.T. Int. J. Numer. Meth. Fl. 2003, 4, 47-75.
  • 14. Tezel, G. B.; Yapici, K.; Uludag, Y. Period Polytech. Chem. Eng. 2019, 63, 190-199.
  • 15. Norouzi, M.; Varedi, S.R.; Zamani, M. Korea-Aust. Rheol. J. 2015, 27, 213-225.
There are 15 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Guler Bengusu Tezel 0000-0002-0671-208X

Kerim Yapıcı This is me 0000-0002-3902-9375

Yusuf Uludag This is me 0000-0002-2151-5818

Publication Date June 28, 2019
Published in Issue Year 2019

Cite

APA Tezel, G. B., Yapıcı, K., & Uludag, Y. (2019). Stress behaviours of viscoelastic flow around square cylinder. International Journal of Chemistry and Technology, 3(1), 61-66. https://doi.org/10.32571/ijct.549930
AMA Tezel GB, Yapıcı K, Uludag Y. Stress behaviours of viscoelastic flow around square cylinder. Int. J. Chem. Technol. June 2019;3(1):61-66. doi:10.32571/ijct.549930
Chicago Tezel, Guler Bengusu, Kerim Yapıcı, and Yusuf Uludag. “Stress Behaviours of Viscoelastic Flow Around Square Cylinder”. International Journal of Chemistry and Technology 3, no. 1 (June 2019): 61-66. https://doi.org/10.32571/ijct.549930.
EndNote Tezel GB, Yapıcı K, Uludag Y (June 1, 2019) Stress behaviours of viscoelastic flow around square cylinder. International Journal of Chemistry and Technology 3 1 61–66.
IEEE G. B. Tezel, K. Yapıcı, and Y. Uludag, “Stress behaviours of viscoelastic flow around square cylinder”, Int. J. Chem. Technol., vol. 3, no. 1, pp. 61–66, 2019, doi: 10.32571/ijct.549930.
ISNAD Tezel, Guler Bengusu et al. “Stress Behaviours of Viscoelastic Flow Around Square Cylinder”. International Journal of Chemistry and Technology 3/1 (June 2019), 61-66. https://doi.org/10.32571/ijct.549930.
JAMA Tezel GB, Yapıcı K, Uludag Y. Stress behaviours of viscoelastic flow around square cylinder. Int. J. Chem. Technol. 2019;3:61–66.
MLA Tezel, Guler Bengusu et al. “Stress Behaviours of Viscoelastic Flow Around Square Cylinder”. International Journal of Chemistry and Technology, vol. 3, no. 1, 2019, pp. 61-66, doi:10.32571/ijct.549930.
Vancouver Tezel GB, Yapıcı K, Uludag Y. Stress behaviours of viscoelastic flow around square cylinder. Int. J. Chem. Technol. 2019;3(1):61-6.