Research Article
BibTex RIS Cite

The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming

Year 2019, Volume: 3 Issue: 1, 26 - 37, 28.06.2019
https://doi.org/10.32571/ijct.478179

Abstract

Growing the molecular mechanism
of chemicals, thermochemical and biological interactions is considered as the
ultimate goal of computational chemistry. Some thermodynamic parameters such as
free energy, entropy, dipole moment, binding energy, nuclear energy,
electronics energy, heat of formation, and QSAR (quantitative structure
activity relationship) properties of molecules like charge density, surface
area grid, volume, LogP, polarizability, refractivity,
molecular mass, and reactivity properties of molecules like
HOMO (the highest occupied molecular orbital), LUMO (the lowest unoccupied molecular orbital), HUMO
(the highest unoccupied molecular orbital )-LUMO gap,
ionization potential and electron affinity were determined using the HyperChem
8.0.10 program. The computed QSAR parameters have a significant role in the estimation
of the biological activity and metabolism in the human body.

References

  • 1. Bridges, J.; French, M.; Smith, R.; Williams, R. Biochem. J. 1970, 118, 47-51.
  • 2. Chou, S.; Huang, C. Chemosphere 1999, 38, 2719-2731.
  • 3. Nayak, J.; Sahu, S.; Kasuya, J.; Nozaki, S. Appl. Surf. Sci. 2008, 254, 7215-7218.
  • 4. Mroz, Z. Advances in Pork Production 2005, 16, 169-182.
  • 5. Doherty, H. M.; Selvendran, R. R.; Bowles, D. J. Physiol. Mol. Plant P. 1988, 33, 377-384.
  • 6. Hazan, R.; Levine, A.; Abeliovich, H. Appl. Env. Microbiol. 2004, 70, 4449-4457.
  • 7. Salmond, C. V.; Kroll, R. G.; Booth, I. R. J. Gen. Microbiol. 1984, 130, 2845-2850.
  • 8. Sakata, Y.; Ponec, V. Appl. Catal A- GEN. 1998, 166, 173-184.
  • 9. Kluge, H.; Broz, J.; Eder, K. J. Anim. Physiol. An. N. 2006, 90, 316-324.
  • 10. Arendt, W. D.; Bohnert, T. J.; Holt, M. S. Google Patents, 2001.
  • 11. Stauffer, D.; Puletti, P. Google Patents, 1993.
  • 12. McBride, W. D.; Catherine, G.; Linda F.; Ali, M. The U.S. Department of Agriculture (USDA), 2015, 188.
  • 13. Ritz, J.; Fuchs, H.; Kieczka, H.; Moran, W. C. Ullmann's Ency. Ind. Chem. 2000.
  • 14. Talukdar, J.; Wong, E. H. S.; Mathur, V. K. Sol. Energy 1991, 47, 165-171.
  • 15. Zeng, Z.; Zhou, R. Google Patents, 2014.
  • 16. Kyle, A. A.; Dahl, M. V. Am. J. Clin. Dermatol. 2004, 5, 443-451.
  • 17. Akhtar, N.; Verma, A.; Pathak, K. Curr. Pharm. Design.2015, 21, 2892-2913.
  • 18. Amborabé, B.-E.; Fleurat-Lessard, P.; Chollet, J.-F.; Roblin, G. Plant. Physiol.Biochem. 2002, 40, 1051-1060.
  • 19. Benchea, A. C.; G Marius; Dorohoi, D. O. Construcţii de Maşini. 2016, 62, 41-50.
  • 20. Waterman, M. S. Introduction to computational biology: maps, sequences and genomes, C. R. C. Press, 1995.
  • 21. Dwyer, M. A.; Looger, L. L.; Hellinga, H. W. Science 2004, 304, 1967-1971.
  • 22. Yap, C. W. J. Comput. Chem. 2011, 32, 1466-1474
  • 23. Gramatica, P.; Papa, E. QSAR & Combinatorial Science 2003, 22, 374-385.
  • 24. Xia, B.; Ma, W.; Zheng, B.; Zhang, X.; Fan, B. Eur. J. Med. Chem. 2008, 43, 1489-1498.
  • 25. Raies, A. B.; Bajic, V. B. WIREs: Comput. Mol. Sci. 2016, 6, 147-172.
  • 26. Shahpar, M.; Esmaeilpoor, S. Asian J. Green Chem. 2017, 2, 116-129.
  • 27. Smith, D. M.; Mitchell, J. Analyt. Chem. 1950, 22(6), 750-755.
  • 28. Kaufman, L.; Cohen, M. Prog. Met. Phys. 1958, 7, 165-246.
  • 29. Shapiro, A. H. The dynamics and thermodynamics of compressible fluid flow. Vol.1, Wiley, New York, 1953.
  • 30. Guggenheim, E. A. Thermodynamics- An advanced treatment for chemists and physicsists. Amsterdam, North-Holland, p.414, 1985.
  • 31. Von Bertalanffy, L. Science 1950, 111, 23-29.
  • 32. Frank, H. S.; Evans, M. W. J. Chem. Phys., 1945, 13, 507-532.
  • 33. Bartlett, R. J.; Musiał, M. Rev. Mod. Phys. 2007, 79, 291.
  • 34. McIver Jr, J. W.; Komornicki, A. Chem. Phys. Lett. 1971, 10, 303-306.
  • 35. Yang, W.; Ayers, P. W. In Computational Medicinal Chemistry for Drug Discovery; CRC Press, pp. 103-132. 2003.
  • 36. Froimowitz, M. Biotechniques 1993, 14(6), 1010-1013.
  • 37. Evans, D. A.; Mitch, C. H.; Thomas, R. C.; Zimmerman, D. M.; Robey, R. L. J. Am. Chem. Soc. 1980, 102(18), 5955-5956.
  • 38. Howard, A.; McIver, J.; Collins, J. HyperChem Computational Chemistry. Hypercube Inc. Waterloo. 1994.
  • 39. Ayala, P. Y.; Scuseria, G. E., J. Chem. Phys..1999, 110, 3660-3671.
  • 40. Muthu, S.; Maheswari, J. U. Spectrochim. Acta A: Mol. Biomol. Spect. 2012, 92, 154-163.
  • 41. Timofeeva, L.; Kleshcheva, N. Appl. Microbiol. Biot. 2011, 89, 475-492.
  • 42. Böhm, M.; Stürzebecher, J.; Klebe, G. J. Med. Chem. 1999, 42, 458-477.

HyperChem programı kullanarak bazı aromatik karboksilik asitlerin HOMO, LUMO, termoplastik özellikleri ve QSAR incelemesinin teorik araştırılması

Year 2019, Volume: 3 Issue: 1, 26 - 37, 28.06.2019
https://doi.org/10.32571/ijct.478179

Abstract

Kimyasalların moleküler mekanizmasını geliştirmek, termokimyasal ve biyolojik etkileşimler hesaplamalı kimyanın temel amacı olarak düşünülmektedir. Moleküllerin serbest enerjisi, entropisi, dipol momenti, bağlanma enerjisi, nükleer enerjisi, elektronik enerjisi, oluşum ısısı gibi bazı termodinamik parametreleri ve yük yoğunluğu, yüzey alanı ızgarası, hacim, LogP, polarizasyon, kırılma, moleküler kütle gibi QSAR (kantitatif yapı aktivite ilişkisi) özellikleri, ve HOMO (en yüksek dolu moleküler orbital), ve LUMO (en düşük boş moleküler orbital), HUMO (en yüksek boş moleküler orbital)- LUMO enerji aralığı, iyonlaşma potansiyeli ve elektron afinitesi gibi reaktivite özellikleri, HyperChem 8.0.10 programı kullanılarak belirlenmiştir. Hesaplanan QSAR parametreleri, insan vücudundaki biyolojik aktivite ve metabolizmanın tahmininde önemli bir role sahiptir.

References

  • 1. Bridges, J.; French, M.; Smith, R.; Williams, R. Biochem. J. 1970, 118, 47-51.
  • 2. Chou, S.; Huang, C. Chemosphere 1999, 38, 2719-2731.
  • 3. Nayak, J.; Sahu, S.; Kasuya, J.; Nozaki, S. Appl. Surf. Sci. 2008, 254, 7215-7218.
  • 4. Mroz, Z. Advances in Pork Production 2005, 16, 169-182.
  • 5. Doherty, H. M.; Selvendran, R. R.; Bowles, D. J. Physiol. Mol. Plant P. 1988, 33, 377-384.
  • 6. Hazan, R.; Levine, A.; Abeliovich, H. Appl. Env. Microbiol. 2004, 70, 4449-4457.
  • 7. Salmond, C. V.; Kroll, R. G.; Booth, I. R. J. Gen. Microbiol. 1984, 130, 2845-2850.
  • 8. Sakata, Y.; Ponec, V. Appl. Catal A- GEN. 1998, 166, 173-184.
  • 9. Kluge, H.; Broz, J.; Eder, K. J. Anim. Physiol. An. N. 2006, 90, 316-324.
  • 10. Arendt, W. D.; Bohnert, T. J.; Holt, M. S. Google Patents, 2001.
  • 11. Stauffer, D.; Puletti, P. Google Patents, 1993.
  • 12. McBride, W. D.; Catherine, G.; Linda F.; Ali, M. The U.S. Department of Agriculture (USDA), 2015, 188.
  • 13. Ritz, J.; Fuchs, H.; Kieczka, H.; Moran, W. C. Ullmann's Ency. Ind. Chem. 2000.
  • 14. Talukdar, J.; Wong, E. H. S.; Mathur, V. K. Sol. Energy 1991, 47, 165-171.
  • 15. Zeng, Z.; Zhou, R. Google Patents, 2014.
  • 16. Kyle, A. A.; Dahl, M. V. Am. J. Clin. Dermatol. 2004, 5, 443-451.
  • 17. Akhtar, N.; Verma, A.; Pathak, K. Curr. Pharm. Design.2015, 21, 2892-2913.
  • 18. Amborabé, B.-E.; Fleurat-Lessard, P.; Chollet, J.-F.; Roblin, G. Plant. Physiol.Biochem. 2002, 40, 1051-1060.
  • 19. Benchea, A. C.; G Marius; Dorohoi, D. O. Construcţii de Maşini. 2016, 62, 41-50.
  • 20. Waterman, M. S. Introduction to computational biology: maps, sequences and genomes, C. R. C. Press, 1995.
  • 21. Dwyer, M. A.; Looger, L. L.; Hellinga, H. W. Science 2004, 304, 1967-1971.
  • 22. Yap, C. W. J. Comput. Chem. 2011, 32, 1466-1474
  • 23. Gramatica, P.; Papa, E. QSAR & Combinatorial Science 2003, 22, 374-385.
  • 24. Xia, B.; Ma, W.; Zheng, B.; Zhang, X.; Fan, B. Eur. J. Med. Chem. 2008, 43, 1489-1498.
  • 25. Raies, A. B.; Bajic, V. B. WIREs: Comput. Mol. Sci. 2016, 6, 147-172.
  • 26. Shahpar, M.; Esmaeilpoor, S. Asian J. Green Chem. 2017, 2, 116-129.
  • 27. Smith, D. M.; Mitchell, J. Analyt. Chem. 1950, 22(6), 750-755.
  • 28. Kaufman, L.; Cohen, M. Prog. Met. Phys. 1958, 7, 165-246.
  • 29. Shapiro, A. H. The dynamics and thermodynamics of compressible fluid flow. Vol.1, Wiley, New York, 1953.
  • 30. Guggenheim, E. A. Thermodynamics- An advanced treatment for chemists and physicsists. Amsterdam, North-Holland, p.414, 1985.
  • 31. Von Bertalanffy, L. Science 1950, 111, 23-29.
  • 32. Frank, H. S.; Evans, M. W. J. Chem. Phys., 1945, 13, 507-532.
  • 33. Bartlett, R. J.; Musiał, M. Rev. Mod. Phys. 2007, 79, 291.
  • 34. McIver Jr, J. W.; Komornicki, A. Chem. Phys. Lett. 1971, 10, 303-306.
  • 35. Yang, W.; Ayers, P. W. In Computational Medicinal Chemistry for Drug Discovery; CRC Press, pp. 103-132. 2003.
  • 36. Froimowitz, M. Biotechniques 1993, 14(6), 1010-1013.
  • 37. Evans, D. A.; Mitch, C. H.; Thomas, R. C.; Zimmerman, D. M.; Robey, R. L. J. Am. Chem. Soc. 1980, 102(18), 5955-5956.
  • 38. Howard, A.; McIver, J.; Collins, J. HyperChem Computational Chemistry. Hypercube Inc. Waterloo. 1994.
  • 39. Ayala, P. Y.; Scuseria, G. E., J. Chem. Phys..1999, 110, 3660-3671.
  • 40. Muthu, S.; Maheswari, J. U. Spectrochim. Acta A: Mol. Biomol. Spect. 2012, 92, 154-163.
  • 41. Timofeeva, L.; Kleshcheva, N. Appl. Microbiol. Biot. 2011, 89, 475-492.
  • 42. Böhm, M.; Stürzebecher, J.; Klebe, G. J. Med. Chem. 1999, 42, 458-477.
There are 42 citations in total.

Details

Primary Language English
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Ajoy Kumer 0000-0001-5136-6166

Md Nuruzzaman Sarker 0000-0003-2760-0113

Sunanda Paul This is me 0000-0001-7739-4018

Publication Date June 28, 2019
Published in Issue Year 2019 Volume: 3 Issue: 1

Cite

APA Kumer, A., Sarker, M. N., & Paul, S. (2019). The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. International Journal of Chemistry and Technology, 3(1), 26-37. https://doi.org/10.32571/ijct.478179
AMA Kumer A, Sarker MN, Paul S. The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. Int. J. Chem. Technol. June 2019;3(1):26-37. doi:10.32571/ijct.478179
Chicago Kumer, Ajoy, Md Nuruzzaman Sarker, and Sunanda Paul. “The Theoretical Investigation of HOMO, LUMO, Thermophysical Properties and QSAR Study of Some Aromatic Carboxylic Acids Using HyperChem Programming”. International Journal of Chemistry and Technology 3, no. 1 (June 2019): 26-37. https://doi.org/10.32571/ijct.478179.
EndNote Kumer A, Sarker MN, Paul S (June 1, 2019) The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. International Journal of Chemistry and Technology 3 1 26–37.
IEEE A. Kumer, M. N. Sarker, and S. Paul, “The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming”, Int. J. Chem. Technol., vol. 3, no. 1, pp. 26–37, 2019, doi: 10.32571/ijct.478179.
ISNAD Kumer, Ajoy et al. “The Theoretical Investigation of HOMO, LUMO, Thermophysical Properties and QSAR Study of Some Aromatic Carboxylic Acids Using HyperChem Programming”. International Journal of Chemistry and Technology 3/1 (June 2019), 26-37. https://doi.org/10.32571/ijct.478179.
JAMA Kumer A, Sarker MN, Paul S. The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. Int. J. Chem. Technol. 2019;3:26–37.
MLA Kumer, Ajoy et al. “The Theoretical Investigation of HOMO, LUMO, Thermophysical Properties and QSAR Study of Some Aromatic Carboxylic Acids Using HyperChem Programming”. International Journal of Chemistry and Technology, vol. 3, no. 1, 2019, pp. 26-37, doi:10.32571/ijct.478179.
Vancouver Kumer A, Sarker MN, Paul S. The theoretical investigation of HOMO, LUMO, thermophysical properties and QSAR study of some aromatic carboxylic acids using HyperChem programming. Int. J. Chem. Technol. 2019;3(1):26-37.

Cited By