Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 2, 280 - 286
https://doi.org/10.32571/ijct.1779215

Abstract

References

  • Alkan, S., Uysal, A., Kasik, G., Vlaisavljevic, S., Berežni, S., & Zengin, G. (2020). Chemical characterization, antioxidant, enzyme inhibition and antimutagenic properties of eight mushroom species: A comparative study. Journal of Fungi, 6(3), 166. https://doi.org/10.3390/jof6030166
  • Babos, M., Halász, K., Zagyva, T., Zöld-Balogh, Á., Szegő, D., & Bratek, Z. (2011). Preliminary notes on dual relevance of ITS sequences and pigments in Hygrocybe taxonomy. Persoonia: Molecular Phylogeny and Evolution of Fungi, 26(1), 99–107. https://doi.org/10.3767/003158511X576666
  • Bal, C., Sevindik, M., Krupodorova, T., & Eraslan, E. C. (2025). Total carbohydrate and protein contents and some biological activities of edible Macrolepiota mastoidea mushroom. Acta Alimentaria, 54(2), 337–346. https://doi.org/10.1556/066.2025.00027
  • Bhambri, A., Srivastava, M., Mahale, V. G., Mahale, S., & Karn, S. K. (2022). Mushrooms as potential sources of active metabolites and medicines. Frontiers in Microbiology, 13, 837266. https://doi.org/10.3389/fmicb.2022.837266
  • Borgen, T., & Arnolds, E. (2004). Taxonomy, ecology and distribution of Hygrocybe (Fr.) P. Kumm. and Camarophyllopsis Herink (Fungi, Basidiomycota, Hygrocybeae) in Greenland. Meddelelser om Grønland. Bioscience, 54, 1–64.
  • Chong, E. L., Sia, C. M., Chang, S. K., Yim, H. S., & Khoo, H. E. (2014). Antioxidative properties of an extract of Hygrocybe conica, a wild edible mushroom. Malaysian Journal of Nutrition, 20(1), 1–12.
  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Eraslan, E. C., Korkmaz, A. I., Uysal, İ., & Bal, C. (2022). Antioxidant potential and heavy metal accumulation of Hygrocybe conica. Eurasian Journal of Medical and Biological Sciences, 2(1), 1–5.
  • Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112–119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • Eroğlu, C., Seçme, M., Atmaca, P., Kaygusuz, O., Gezer, K., Bağcı, G., & Dodurga, Y. (2016). Extract of Calvatia gigantea inhibits proliferation of A549 human lung cancer cells. Cytotechnology, 68(5), 2075–2081. https://doi.org/10.1007/s10616-015-9934-6
  • Gürgen, A., & Sevindik, M. (2022). Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. Journal of Food Processing and Preservation, 46(11), e16949. https://doi.org/10.1111/jfpp.16949
  • Gürgen, A., & Sevindik, M. (2025). Single and multi-objective optimization of the red pine mushroom Lactarius deliciosus (Agaricomycetes) extraction conditions using artificial intelligence methods and biological activities of optimized extracts. International Journal of Medicinal Mushrooms, 27(2), 59–73. https://doi.org/10.1615/IntJMedMushrooms.2025030937
  • Gürgen, A., Unal, O., & Sevindik, M. (2024b). Biological activities of the golden chantarelle mushroom Cantharellus cibarius (Agaricomycetes) extracts obtained as a result of single and multi-objective optimization studies. International Journal of Medicinal Mushrooms, 26(12), 63–74. https://doi.org/10.1615/IntJMedMushrooms.2024031834
  • Ikram, A., Ibrahim, N. A., Arshad, M. T., Fatima, A., Taseer, A. A., Hussain, M. F., ... & Al-Duais, M. A. (2025). Mushroom bioactive molecules as anticancerous agents: An overview. Food Science & Nutrition, 13(7), e70580. https://doi.org/10.1002/fsn3.70580
  • Kabaktepe, Ş., Bal, C., Eraslan, E. C., Gürgen, A., Akata, I., & Sevindik, M. (2025). Evaluation of bioactive potential of the ruby bolete Hortiboletus rubellus (Agaricomycetes): Antioxidant, enzyme inhibition, and antiproliferative effects. International Journal of Medicinal Mushrooms, 27(10), 21–31. https://doi.org/10.1615/IntJMedMushrooms.2025032640
  • Kim, D. Y., Bae, S. M., Han, S. M., & Lee, J. S. (2016). Screening of potent anti-dementia acetylcholinesterase inhibitor-containing edible mushroom Pholiota adiposa and the optimal extraction conditions for the acetylcholinesterase inhibitor. The Korean Journal of Mycology, 44(4), 314–317. https://doi.org/10.4489/KJM.2016.44.4.314
  • Koyuncu, M. Ö., Görmez, V., Sevindik, M., Krupodorova, T., & Eraslan, E. C. (2025). Multilayered interactions between Lepidoptera and fungi: Spore dispersal, mycophagy, and entomopathogenic relationships. Symbiosis, 87, 1–12. https://doi.org/10.1007/s13199-025-01028-y
  • Laursen, G. A., Ammirati, J. F., & Farr, D. F. (1987). Hygrophoraceae from arctic and alpine tundra in Alaska. In G. A. Laursen & J. F. Ammirati (Eds.), Arctic and Alpine Mycology II (pp. 273–286). Boston, MA: Springer. https://doi.org/10.1007/978-1-4757-1963-8_24
  • Nguyen, T. K., Im, K. H., Choi, J., Shin, P. G., & Lee, T. S. (2016). Evaluation of antioxidant, anti-cholinesterase, and anti-inflammatory effects of culinary mushroom Pleurotus pulmonarius. Mycobiology, 44(4), 291–301. https://doi.org/10.5941/MYCO.2016.44.4.291
  • Okumuş, E., Canbolat, F., & Acar, İ. (2025). Evaluation of antioxidant activity, anti-lipid peroxidation effect and elemental impurity risk of some wild Agaricus species mushrooms. BMC Plant Biology, 25(1), 476. https://doi.org/10.1186/s12870-025-05139-9
  • Phan, C. W., David, P., & Sabaratnam, V. (2017). Edible and medicinal mushrooms: Emerging brain food for the mitigation of neurodegenerative diseases. Journal of Medicinal Food, 20(1), 1–10. https://doi.org/10.1089/jmf.2016.3740
  • Santosa, P. B., Yuwati, T. W., Hakim, S. S., Hidayat, A., Turjaman, M., & Suhartono, E. (2021, May). Ethnomycological knowledge and nutritional properties of edible mushroom Kulat Siau (Hygrocybe conica) in Central Kalimantan. In IOP Conference Series: Earth and Environmental Science (Vol. 762, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1755-1315/762/1/012058
  • Seçme, M., Kaygusuz, O., Eroglu, C., Dodurga, Y., Colak, O. F., & Atmaca, P. (2018). Potential anticancer activity of the parasol mushroom, Macrolepiota procera (Agaricomycetes), against the A549 human lung cancer cell line. International Journal of Medicinal Mushrooms, 20(11), 1007–1016. https://doi.org/10.1615/IntJMedMushrooms.2018026885
  • Sepčić, K., Sabotič, J., Ohm, R. A., Drobne, D., & Jemec Kokalj, A. (2019). First evidence of cholinesterase-like activity in Basidiomycota. PLoS One, 14(4), e0216077. https://doi.org/10.1371/journal.pone.0216077
  • Sevindik, M. (2018). Investigation of oxidant and antioxidant status of edible mushroom Clavariadelphus truncatus. Mantar Dergisi, 9(2), 165–168.
  • Sevindik, M. (2020). Antioxidant and antimicrobial capacity of Lactifluus rugatus and its antiproliferative activity on A549 cells. Indian Journal of Traditional Knowledge, 19(2), 423–427.
  • Sevindik, M. (2021). Anticancer, antimicrobial, antioxidant and DNA protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian Journal of Experimental Biology, 59(5), 310–315.
  • Sevindik, M., Bal, C., Eraslan, E. C., Uysal, I., & Mohammed, F. S. (2023). Medicinal mushrooms: A comprehensive study on their antiviral potential. Prospects in Pharmaceutical Sciences, 21(2), 42–56.
  • Sevindik, M., Gürgen, A., Khassanov, V. T., & Bal, C. (2024). Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods, 13(10), 1560. https://doi.org/10.3390/foods13101560
  • Sevindik, M., Gürgen, A., Korkmaz, A. F., & Akata, I. (2025). Optimizing ultrasonic-assisted extraction process of Paralepista flaccida: A comparative study of antioxidant, anticholinesterase, and antiproliferative activities via response surface methodology and artificial neural network modeling. Molecules, 30(16), 3317. https://doi.org/10.3390/molecules30163317
  • Silva-Filho, A. G., Bottke, C. C., Baseia, I. G., Cortez, V. G., & Wartchow, F. (2019). Morphological description and new records of Hygrocybe conica var. conica and H. nigrescens var. brevispora (Hygrophoraceae) in Brazil. Hoehnea, 46(3), e012019. https://doi.org/10.1590/2236-8906-08/2018
  • Tel, G., Apaydın, M., Duru, M. E., & Öztürk, M. (2012). Antioxidant and cholinesterase inhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Analytical Methods, 5(3), 495–504. https://doi.org/10.1007/s12161-011-9277-3
  • Terradas, F., & Wyler, H. (1991). The secodopas, natural pigments in Hygrocybe conica and Amanita muscaria. Phytochemistry, 30(10), 3251–3253. https://doi.org/10.1016/0031-9422(91)83233-9
  • Tong, Z., Chu, G., Wan, C., Wang, Q., Yang, J., Meng, Z., ... & Ma, H. (2023). Multiple metabolites derived from mushrooms and their beneficial effect on Alzheimer’s diseases. Nutrients, 15(12), 2758. https://doi.org/10.3390/nu15122758
  • Uygun, A. E., Sevindik, M., & Eraslan, E. C. (2025). Mantarların besinsel gücü: Makro, mikro besin öğeleri ve fonksiyonel potansiyelleri üzerine kapsamlı bir derleme. Wah Academia Journal of Health and Nutrition, 1(2), 4–8.
  • Ünal, O., Gürgen, A., Krupodorova, T., Sevindik, M., Kabaktepe, Ş., & Akata, I. (2025). Optimization of Phellinus hartigii extracts: Biological activities, and phenolic content analysis. BMC Complementary Medicine and Therapies, 25(1), 113. https://doi.org/10.1186/s12906-025-04350-9
  • Varghese, R., & Dalvi, Y. B. (2021). Natural products as anticancer agents. Current Drug Targets, 22(11), 1272–1287. https://doi.org/10.2174/1389450122666210222104049
  • Wang, W., Yang, H., Deng, J., Zhu, L., Yang, Y., Liu, Z., ... & Jia, W. (2019). Increased inhibition effect of Antrodin C from the stout camphor medicinal mushroom, Taiwanofungus camphoratus (Agaricomycetes), on A549 through crosstalk between apoptosis and autophagy. International Journal of Medicinal Mushrooms, 21(6), 581–590. https://doi.org/10.1615/IntJMedMushrooms.2019030686
  • Yim, H. S., Chye, F. Y., Lee, M. Y., Matanjun, P., How, S. E., & Ho, C. W. (2011). Comparative study of antioxidant activities and total phenolic content of selected edible wild mushrooms. International Journal of Medicinal Mushrooms, 13(3), 265–271. https://doi.org/10.1615/IntJMedMushr.v13.i3.80
  • Zaidman, B. Z., Yassin, M., Mahajna, J., & Wasser, S. P. (2005). Medicinal mushroom modulators of molecular targets as cancer therapeutics. Applied Microbiology and Biotechnology, 67(4), 453–468. https://doi.org/10.1007/s00253-004-1782-0
  • Zhou, J., Chen, M., Wu, S., Liao, X., Wang, J., Wu, Q., ... & Ding, Y. (2020). A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International, 134, 109230. https://doi.org/10.1016/j.foodres.2020.109230

Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica

Year 2025, Volume: 9 Issue: 2, 280 - 286
https://doi.org/10.32571/ijct.1779215

Abstract

In this study, antioxidant, anticholinesterase and antiproliferative properties of ethanol extracts of Hygrocybe conica were determined. The ethanol extract of the mushroom was extracted by Soxhlet apparatus. Antioxidant activities were determined by TAS, TOS, OSI, DPPH and FRAP analyses. The TAS value of the mushroom extract was 3.559 mmol/L, TOS value was 9.350 µmol/L and OSI value was 0.263. Radical scavenging and reducing capacities were also notable, with DPPH measured as 52.360 mg TE/g and FRAP as 78.503 mg TE/g. Anticholinesterase assays revealed moderate enzyme inhibition with IC₅₀ values of 169.29 µg/mL for AChE and 213.41 µg/mL for BChE, indicating lower activity compared to galantamine. The antiproliferative effect was evaluated in the A549 lung cancer cell line, where the extract significantly reduced cell viability in a dose-dependent manner, with the most pronounced inhibition observed at 200 µg/mL. These findings suggest that H. conica is a promising natural source of bioactive compounds with antioxidant, neuroprotective, and anticancer potential.

References

  • Alkan, S., Uysal, A., Kasik, G., Vlaisavljevic, S., Berežni, S., & Zengin, G. (2020). Chemical characterization, antioxidant, enzyme inhibition and antimutagenic properties of eight mushroom species: A comparative study. Journal of Fungi, 6(3), 166. https://doi.org/10.3390/jof6030166
  • Babos, M., Halász, K., Zagyva, T., Zöld-Balogh, Á., Szegő, D., & Bratek, Z. (2011). Preliminary notes on dual relevance of ITS sequences and pigments in Hygrocybe taxonomy. Persoonia: Molecular Phylogeny and Evolution of Fungi, 26(1), 99–107. https://doi.org/10.3767/003158511X576666
  • Bal, C., Sevindik, M., Krupodorova, T., & Eraslan, E. C. (2025). Total carbohydrate and protein contents and some biological activities of edible Macrolepiota mastoidea mushroom. Acta Alimentaria, 54(2), 337–346. https://doi.org/10.1556/066.2025.00027
  • Bhambri, A., Srivastava, M., Mahale, V. G., Mahale, S., & Karn, S. K. (2022). Mushrooms as potential sources of active metabolites and medicines. Frontiers in Microbiology, 13, 837266. https://doi.org/10.3389/fmicb.2022.837266
  • Borgen, T., & Arnolds, E. (2004). Taxonomy, ecology and distribution of Hygrocybe (Fr.) P. Kumm. and Camarophyllopsis Herink (Fungi, Basidiomycota, Hygrocybeae) in Greenland. Meddelelser om Grønland. Bioscience, 54, 1–64.
  • Chong, E. L., Sia, C. M., Chang, S. K., Yim, H. S., & Khoo, H. E. (2014). Antioxidative properties of an extract of Hygrocybe conica, a wild edible mushroom. Malaysian Journal of Nutrition, 20(1), 1–12.
  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Eraslan, E. C., Korkmaz, A. I., Uysal, İ., & Bal, C. (2022). Antioxidant potential and heavy metal accumulation of Hygrocybe conica. Eurasian Journal of Medical and Biological Sciences, 2(1), 1–5.
  • Erel, O. (2004). A novel automated method to measure total antioxidant response against potent free radical reactions. Clinical Biochemistry, 37(2), 112–119. https://doi.org/10.1016/j.clinbiochem.2003.10.014
  • Erel, O. (2005). A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry, 38(12), 1103–1111. https://doi.org/10.1016/j.clinbiochem.2005.08.008
  • Eroğlu, C., Seçme, M., Atmaca, P., Kaygusuz, O., Gezer, K., Bağcı, G., & Dodurga, Y. (2016). Extract of Calvatia gigantea inhibits proliferation of A549 human lung cancer cells. Cytotechnology, 68(5), 2075–2081. https://doi.org/10.1007/s10616-015-9934-6
  • Gürgen, A., & Sevindik, M. (2022). Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. Journal of Food Processing and Preservation, 46(11), e16949. https://doi.org/10.1111/jfpp.16949
  • Gürgen, A., & Sevindik, M. (2025). Single and multi-objective optimization of the red pine mushroom Lactarius deliciosus (Agaricomycetes) extraction conditions using artificial intelligence methods and biological activities of optimized extracts. International Journal of Medicinal Mushrooms, 27(2), 59–73. https://doi.org/10.1615/IntJMedMushrooms.2025030937
  • Gürgen, A., Unal, O., & Sevindik, M. (2024b). Biological activities of the golden chantarelle mushroom Cantharellus cibarius (Agaricomycetes) extracts obtained as a result of single and multi-objective optimization studies. International Journal of Medicinal Mushrooms, 26(12), 63–74. https://doi.org/10.1615/IntJMedMushrooms.2024031834
  • Ikram, A., Ibrahim, N. A., Arshad, M. T., Fatima, A., Taseer, A. A., Hussain, M. F., ... & Al-Duais, M. A. (2025). Mushroom bioactive molecules as anticancerous agents: An overview. Food Science & Nutrition, 13(7), e70580. https://doi.org/10.1002/fsn3.70580
  • Kabaktepe, Ş., Bal, C., Eraslan, E. C., Gürgen, A., Akata, I., & Sevindik, M. (2025). Evaluation of bioactive potential of the ruby bolete Hortiboletus rubellus (Agaricomycetes): Antioxidant, enzyme inhibition, and antiproliferative effects. International Journal of Medicinal Mushrooms, 27(10), 21–31. https://doi.org/10.1615/IntJMedMushrooms.2025032640
  • Kim, D. Y., Bae, S. M., Han, S. M., & Lee, J. S. (2016). Screening of potent anti-dementia acetylcholinesterase inhibitor-containing edible mushroom Pholiota adiposa and the optimal extraction conditions for the acetylcholinesterase inhibitor. The Korean Journal of Mycology, 44(4), 314–317. https://doi.org/10.4489/KJM.2016.44.4.314
  • Koyuncu, M. Ö., Görmez, V., Sevindik, M., Krupodorova, T., & Eraslan, E. C. (2025). Multilayered interactions between Lepidoptera and fungi: Spore dispersal, mycophagy, and entomopathogenic relationships. Symbiosis, 87, 1–12. https://doi.org/10.1007/s13199-025-01028-y
  • Laursen, G. A., Ammirati, J. F., & Farr, D. F. (1987). Hygrophoraceae from arctic and alpine tundra in Alaska. In G. A. Laursen & J. F. Ammirati (Eds.), Arctic and Alpine Mycology II (pp. 273–286). Boston, MA: Springer. https://doi.org/10.1007/978-1-4757-1963-8_24
  • Nguyen, T. K., Im, K. H., Choi, J., Shin, P. G., & Lee, T. S. (2016). Evaluation of antioxidant, anti-cholinesterase, and anti-inflammatory effects of culinary mushroom Pleurotus pulmonarius. Mycobiology, 44(4), 291–301. https://doi.org/10.5941/MYCO.2016.44.4.291
  • Okumuş, E., Canbolat, F., & Acar, İ. (2025). Evaluation of antioxidant activity, anti-lipid peroxidation effect and elemental impurity risk of some wild Agaricus species mushrooms. BMC Plant Biology, 25(1), 476. https://doi.org/10.1186/s12870-025-05139-9
  • Phan, C. W., David, P., & Sabaratnam, V. (2017). Edible and medicinal mushrooms: Emerging brain food for the mitigation of neurodegenerative diseases. Journal of Medicinal Food, 20(1), 1–10. https://doi.org/10.1089/jmf.2016.3740
  • Santosa, P. B., Yuwati, T. W., Hakim, S. S., Hidayat, A., Turjaman, M., & Suhartono, E. (2021, May). Ethnomycological knowledge and nutritional properties of edible mushroom Kulat Siau (Hygrocybe conica) in Central Kalimantan. In IOP Conference Series: Earth and Environmental Science (Vol. 762, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1755-1315/762/1/012058
  • Seçme, M., Kaygusuz, O., Eroglu, C., Dodurga, Y., Colak, O. F., & Atmaca, P. (2018). Potential anticancer activity of the parasol mushroom, Macrolepiota procera (Agaricomycetes), against the A549 human lung cancer cell line. International Journal of Medicinal Mushrooms, 20(11), 1007–1016. https://doi.org/10.1615/IntJMedMushrooms.2018026885
  • Sepčić, K., Sabotič, J., Ohm, R. A., Drobne, D., & Jemec Kokalj, A. (2019). First evidence of cholinesterase-like activity in Basidiomycota. PLoS One, 14(4), e0216077. https://doi.org/10.1371/journal.pone.0216077
  • Sevindik, M. (2018). Investigation of oxidant and antioxidant status of edible mushroom Clavariadelphus truncatus. Mantar Dergisi, 9(2), 165–168.
  • Sevindik, M. (2020). Antioxidant and antimicrobial capacity of Lactifluus rugatus and its antiproliferative activity on A549 cells. Indian Journal of Traditional Knowledge, 19(2), 423–427.
  • Sevindik, M. (2021). Anticancer, antimicrobial, antioxidant and DNA protective potential of mushroom Leucopaxillus gentianeus (Quél.) Kotl. Indian Journal of Experimental Biology, 59(5), 310–315.
  • Sevindik, M., Bal, C., Eraslan, E. C., Uysal, I., & Mohammed, F. S. (2023). Medicinal mushrooms: A comprehensive study on their antiviral potential. Prospects in Pharmaceutical Sciences, 21(2), 42–56.
  • Sevindik, M., Gürgen, A., Khassanov, V. T., & Bal, C. (2024). Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods, 13(10), 1560. https://doi.org/10.3390/foods13101560
  • Sevindik, M., Gürgen, A., Korkmaz, A. F., & Akata, I. (2025). Optimizing ultrasonic-assisted extraction process of Paralepista flaccida: A comparative study of antioxidant, anticholinesterase, and antiproliferative activities via response surface methodology and artificial neural network modeling. Molecules, 30(16), 3317. https://doi.org/10.3390/molecules30163317
  • Silva-Filho, A. G., Bottke, C. C., Baseia, I. G., Cortez, V. G., & Wartchow, F. (2019). Morphological description and new records of Hygrocybe conica var. conica and H. nigrescens var. brevispora (Hygrophoraceae) in Brazil. Hoehnea, 46(3), e012019. https://doi.org/10.1590/2236-8906-08/2018
  • Tel, G., Apaydın, M., Duru, M. E., & Öztürk, M. (2012). Antioxidant and cholinesterase inhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Analytical Methods, 5(3), 495–504. https://doi.org/10.1007/s12161-011-9277-3
  • Terradas, F., & Wyler, H. (1991). The secodopas, natural pigments in Hygrocybe conica and Amanita muscaria. Phytochemistry, 30(10), 3251–3253. https://doi.org/10.1016/0031-9422(91)83233-9
  • Tong, Z., Chu, G., Wan, C., Wang, Q., Yang, J., Meng, Z., ... & Ma, H. (2023). Multiple metabolites derived from mushrooms and their beneficial effect on Alzheimer’s diseases. Nutrients, 15(12), 2758. https://doi.org/10.3390/nu15122758
  • Uygun, A. E., Sevindik, M., & Eraslan, E. C. (2025). Mantarların besinsel gücü: Makro, mikro besin öğeleri ve fonksiyonel potansiyelleri üzerine kapsamlı bir derleme. Wah Academia Journal of Health and Nutrition, 1(2), 4–8.
  • Ünal, O., Gürgen, A., Krupodorova, T., Sevindik, M., Kabaktepe, Ş., & Akata, I. (2025). Optimization of Phellinus hartigii extracts: Biological activities, and phenolic content analysis. BMC Complementary Medicine and Therapies, 25(1), 113. https://doi.org/10.1186/s12906-025-04350-9
  • Varghese, R., & Dalvi, Y. B. (2021). Natural products as anticancer agents. Current Drug Targets, 22(11), 1272–1287. https://doi.org/10.2174/1389450122666210222104049
  • Wang, W., Yang, H., Deng, J., Zhu, L., Yang, Y., Liu, Z., ... & Jia, W. (2019). Increased inhibition effect of Antrodin C from the stout camphor medicinal mushroom, Taiwanofungus camphoratus (Agaricomycetes), on A549 through crosstalk between apoptosis and autophagy. International Journal of Medicinal Mushrooms, 21(6), 581–590. https://doi.org/10.1615/IntJMedMushrooms.2019030686
  • Yim, H. S., Chye, F. Y., Lee, M. Y., Matanjun, P., How, S. E., & Ho, C. W. (2011). Comparative study of antioxidant activities and total phenolic content of selected edible wild mushrooms. International Journal of Medicinal Mushrooms, 13(3), 265–271. https://doi.org/10.1615/IntJMedMushr.v13.i3.80
  • Zaidman, B. Z., Yassin, M., Mahajna, J., & Wasser, S. P. (2005). Medicinal mushroom modulators of molecular targets as cancer therapeutics. Applied Microbiology and Biotechnology, 67(4), 453–468. https://doi.org/10.1007/s00253-004-1782-0
  • Zhou, J., Chen, M., Wu, S., Liao, X., Wang, J., Wu, Q., ... & Ding, Y. (2020). A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International, 134, 109230. https://doi.org/10.1016/j.foodres.2020.109230
There are 42 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Medicinal and Aromatic Plants
Journal Section Research Article
Authors

Aras Fahrettin Korkmaz 0000-0002-3827-3018

Early Pub Date November 26, 2025
Publication Date November 29, 2025
Submission Date September 6, 2025
Acceptance Date November 18, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Korkmaz, A. F. (2025). Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica. International Journal of Chemistry and Technology, 9(2), 280-286. https://doi.org/10.32571/ijct.1779215
AMA Korkmaz AF. Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica. Int. J. Chem. Technol. November 2025;9(2):280-286. doi:10.32571/ijct.1779215
Chicago Korkmaz, Aras Fahrettin. “Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica”. International Journal of Chemistry and Technology 9, no. 2 (November 2025): 280-86. https://doi.org/10.32571/ijct.1779215.
EndNote Korkmaz AF (November 1, 2025) Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica. International Journal of Chemistry and Technology 9 2 280–286.
IEEE A. F. Korkmaz, “Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica”, Int. J. Chem. Technol., vol. 9, no. 2, pp. 280–286, 2025, doi: 10.32571/ijct.1779215.
ISNAD Korkmaz, Aras Fahrettin. “Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica”. International Journal of Chemistry and Technology 9/2 (November2025), 280-286. https://doi.org/10.32571/ijct.1779215.
JAMA Korkmaz AF. Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica. Int. J. Chem. Technol. 2025;9:280–286.
MLA Korkmaz, Aras Fahrettin. “Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica”. International Journal of Chemistry and Technology, vol. 9, no. 2, 2025, pp. 280-6, doi:10.32571/ijct.1779215.
Vancouver Korkmaz AF. Antioxidant, Anticholinesterase and Antiproliferative Properties of the Wild Mushroom Hygrocybe Conica. Int. J. Chem. Technol. 2025;9(2):280-6.