BibTex RIS Cite

The Dual Rodrigues Parameters

Year 2010, Volume: 2 Issue: 2, 23 - 32, 01.06.2010

Abstract

The development of Rodrigues parameters in the first half of 19th century has attracted much attention in the field of theoretical kinematics. The importance of the Rodrigues formulae depends on the use of the tangent of the half rotation angle being integrated with the components of the rotation axis. In this paper Rodrigues parameters of the dual spherical motion are obtained, which are called the dual Rodrigues parameters. The dual Rodrigues parameters contain the rotation angle and the distance parameter of the straight lines (the shortest distance between the straight lines) of the corresponding spatial motion

References

  • W. K. Clifford Proc. London Mathematic Society, 4, 1873, p. 381.
  • F. M. Dimentberg, The Screw Calculus and its Applications in Mechanics, (Izdat, “Nauka”, Moscow, USSR, 1965) English translation: AD680993, Clearinghouse for Federal and Sciencetific Information, Virginia).
  • E. Study, Die Geometrie der Dynamen, Leibzig, 1901.
  • W.L. Edge, The Theory of Ruled Surfaces, Cambridge University Press, Cambridge, 1931.
  • V. Hlavaty, Differential Line Geometry, P. Nothoft Ltd., Groningen, 1953.
  • E. A. weis, Einführong in die Linengeometri und Kinematic, Leipzig, Berlin, 1935.
  • K. Zidler Linengeometri mit Anwendungen, 2 volumes, De Gruyter, Berlin, 1902.
  • J. M. McCarthy, An Introduction to Theoretical Kinematics, The MIT Press, Cambridge.
  • O. Bottema, B. Roth, Theoretical Kinematics, North Holland, Amsterdam, 1979.
  • J. M. McCarthy, B. Roth, The Curvature Theory of Line Trajectories in Spatial Kinematics, ASME Journal of Mechanical Design 103, 4, 1981.
  • Y. Kirson, Curvature Theory in Space Kinematics, PhD dissertation 140, University of California Berkley, 1975.
  • G. R. Veldkamp, On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanism and Machine Theory 11(2), (1976), 141-156.
  • Ö. Köse, C. C. Sarıoğlu, B. Karabey, İ. Karakılıç, Kinematic Differential Geometry of a Rigid Body in Spatial Motion Using Dual Vector Calculus: Part II, Applied Mathematics and Computation 182 (2006) 333-358. [14] H. Potmann, J. Wallner, Computational line geometry, Springer-Verlag , Berlin, 2001.
  • I. S. Fischer, Dual-Number Methods in Kinematics, Statics and Dynamics, CRC Press LLC. Florida, 1999.
Year 2010, Volume: 2 Issue: 2, 23 - 32, 01.06.2010

Abstract

References

  • W. K. Clifford Proc. London Mathematic Society, 4, 1873, p. 381.
  • F. M. Dimentberg, The Screw Calculus and its Applications in Mechanics, (Izdat, “Nauka”, Moscow, USSR, 1965) English translation: AD680993, Clearinghouse for Federal and Sciencetific Information, Virginia).
  • E. Study, Die Geometrie der Dynamen, Leibzig, 1901.
  • W.L. Edge, The Theory of Ruled Surfaces, Cambridge University Press, Cambridge, 1931.
  • V. Hlavaty, Differential Line Geometry, P. Nothoft Ltd., Groningen, 1953.
  • E. A. weis, Einführong in die Linengeometri und Kinematic, Leipzig, Berlin, 1935.
  • K. Zidler Linengeometri mit Anwendungen, 2 volumes, De Gruyter, Berlin, 1902.
  • J. M. McCarthy, An Introduction to Theoretical Kinematics, The MIT Press, Cambridge.
  • O. Bottema, B. Roth, Theoretical Kinematics, North Holland, Amsterdam, 1979.
  • J. M. McCarthy, B. Roth, The Curvature Theory of Line Trajectories in Spatial Kinematics, ASME Journal of Mechanical Design 103, 4, 1981.
  • Y. Kirson, Curvature Theory in Space Kinematics, PhD dissertation 140, University of California Berkley, 1975.
  • G. R. Veldkamp, On the Use of Dual Numbers, Vectors and Matrices in Instantaneous Spatial Kinematics, Mechanism and Machine Theory 11(2), (1976), 141-156.
  • Ö. Köse, C. C. Sarıoğlu, B. Karabey, İ. Karakılıç, Kinematic Differential Geometry of a Rigid Body in Spatial Motion Using Dual Vector Calculus: Part II, Applied Mathematics and Computation 182 (2006) 333-358. [14] H. Potmann, J. Wallner, Computational line geometry, Springer-Verlag , Berlin, 2001.
  • I. S. Fischer, Dual-Number Methods in Kinematics, Statics and Dynamics, CRC Press LLC. Florida, 1999.
There are 14 citations in total.

Details

Other ID JA65HG53UC
Journal Section Articles
Authors

İ. Karakılıç This is me

Publication Date June 1, 2010
Published in Issue Year 2010 Volume: 2 Issue: 2

Cite

APA Karakılıç, İ. (2010). The Dual Rodrigues Parameters. International Journal of Engineering and Applied Sciences, 2(2), 23-32.
AMA Karakılıç İ. The Dual Rodrigues Parameters. IJEAS. June 2010;2(2):23-32.
Chicago Karakılıç, İ. “The Dual Rodrigues Parameters”. International Journal of Engineering and Applied Sciences 2, no. 2 (June 2010): 23-32.
EndNote Karakılıç İ (June 1, 2010) The Dual Rodrigues Parameters. International Journal of Engineering and Applied Sciences 2 2 23–32.
IEEE İ. Karakılıç, “The Dual Rodrigues Parameters”, IJEAS, vol. 2, no. 2, pp. 23–32, 2010.
ISNAD Karakılıç, İ. “The Dual Rodrigues Parameters”. International Journal of Engineering and Applied Sciences 2/2 (June 2010), 23-32.
JAMA Karakılıç İ. The Dual Rodrigues Parameters. IJEAS. 2010;2:23–32.
MLA Karakılıç, İ. “The Dual Rodrigues Parameters”. International Journal of Engineering and Applied Sciences, vol. 2, no. 2, 2010, pp. 23-32.
Vancouver Karakılıç İ. The Dual Rodrigues Parameters. IJEAS. 2010;2(2):23-32.

21357