Improved Routh-Padé Approximants Using Vector Evaluated Genetic Algorithm to Unstable Systems
Year 2009,
Volume: 1 Issue: 2, 1 - 14, 01.06.2009
S. K. Mittal
D. Chandra
B. Dwivedi
Abstract
This note describes a novel approach to Routh-Padé approximation problem relating to the construction of reduced-order approximants for continuous-time unstable systems. In this method, stability and the first r timemoments/Markov-parameters are preserved as well as the errors between a set of subsequent timemoments/Markov-parameters of the system and those of the model are minimized. For the solution of this problem a method using the concept of Pareto-optimality is proposed. Pareto-optimal curve is the solution of Multi-objective Optimization problem. Evolutionary Algorithm such as real parameter Genetic Algorithm is used to get Paretooptimal curve. The search area for GA is very wide and it usually converges to a point near global optima
References
- Appiah, R.K, Pade methods of Hurwitz polynomial approximation with application to linear system reduction, Int. J.Control. 29: 39-48, 1979.
- Ashoor, N. and Singh, V., A note on low order modeling, IEEE Trans. Automat. Contr. 27, 1124-1126, 1982.
- Ashoor, N. and Singh, V., Remarks on system simplification under consideration of time response, Electron. Lett., 18, 496-497, 1982.
- Bandyopadhyay, B. and Ismail, O and Gorez, R., Routh-Pade Approximation for Interval systems, IEEE Trans. Automat. Contr., 39(12),1994
- Bandyopadhyay, B. and Upadhye, A. and Ismail O., γ-δ Routh approximation for interval systems, IEEE Trans. Automat. Contr., 42(12), 1997.
- Bistritz, Y. and Shaked, U., Stable linear systems simplification via Pade approximations to Hurwitz polynomials, Trans. ASME J. Dyn. Syst. Meas.Control., 103, 279-284, 1981.
- Blakelock , J.H., Automatic control of aircraft and missiles, John wiley Inc. New york , 226- 235, 1965.
- Chen, T.C.and Chang, C.Y.and Han, K.W., Stable reduced-order Pade approximants using stability equation method, Electron. Lett., 16, 345-346,1980.
- Choo, Y. Improvement to modified Routh approximation method., Electron. Lett. , 35, 606- 607. 1999.
- Choo, Y., Improvement to modified Routh approximation method (correction), Electron. Lett., 1119, 1999.
- Choo, Y., Direct method for obtaining modified Routh approximants., Electron. Lett., 35, 627–1628 1999.
- Choo, Y., Improved bilinear Routh approximation method for discrete time systems, Trans. ASME J. Dyn. Syst. Meas. Control., 123, 125–127, 2001.
- Choo, Y., Equivalence of bilinear Routh and Schwarz approximation methods for discrete- time systems, Electron. Lett., 38, 761–762, 2002.
- Choo, Y. and Dongmin, K., SISO Continuous System Reduction via impulse response Gramian by iterative formulae, Trans. ASME J. Dyn. Syst. Meas. Contr., 128, 391-393, 2006.
- Dolgin, Y. and Zeheb, E., On Routh-Pade model reduction of interval systems, IEEE Trans. Autom. Control, 48, 1610–1612,2003.
- Deb., K., Multi-objective Optimization using Evolutionary Algorithm., New York, John Wiley and Sons Ltd., 2002.
- Douglas, J.M., Process dynamics and control vol.2 Control system synthesis,prentice Hall New Jersey 1972 chapter 7.
- Sastry, G.V.K.R. and Rao, G.R. and Rao, P.M. Large scale interval system modelling using Routh approximants, Electron. Lett., 36, 768–769, 2000. [19]
- Hutton, M.F. and Friedland, B., Routh approximations for reducing order of linear time
- invariant systems, IEEE Trans. Automat. Contr., AC-20, 329- 337, 1975.
- Hsieh, C.S and Hwang, C., Model reduction of continuous-time system using a modified Routh-approximation method, IEE Proc. D. Control Theory Appl., 136, 151–156 1989.
- Householder, A.S., The numerical treatment of single non-linear equation, McGraw-Hill Book Co., New -Newyork 1970.
- Hwang, C. and Hwang, J.H. and Guo, T.Y., Multifrequency Routh Approximants for linear systems, IEE Proc. Control Theory Applicat. , 142, 351-358, 1975.
- Hwang, C.Y. and Lee, Y.C., A new family of Routh approximants. Circuits Syst. Signal Process. , 16, 1-25, 1997. [24]
- Hwang, C. and Yang, S.F., Comments on the computation of interval Routh
- approximants., IEEE Trans. Autom. Control., 44, 1782–1787, 1999.
- Kelley, K.J., Aircraft manoeuvre optimization by reduced order approximation control and dynamic system (Ed:C.T. Leondes) , Academic Press London, 132-174, 1973.
- Krishnamurthy, V. and Sheshadri, V., Model reduction using Routh Stability criterion, IEEE Trans. Autom. Control. 1978; 23: 729-731.
- Krishnamurthy V. and V.Sheshadri V A simple and direct method of reduction order of linear systems using routh approximation in frequency domain IEEE Trans. Autom. Control. 21, 797-799, 1976.
- Luss, R.and Jaakola, T., Direct search and systematic reduction of size of search region. AICHE J., 19, 760-766, 1973.
- Lucas, T.N., The bilinear method: a new stability-preserving order reduction approach. Proc. Inst. Mech. Engg. I. J. Syst. Contr. Engg., 216, 429-436, 2002.
- Lucas, T.N., Constrained optimal Pade model reduction., ASME J .Dyna. Syst. Meas. Control, 119, 685-690, 1997.
- Lee, Y.C. and Hwang, C.and Hwang J.H., Model-reduction of SISO systems by Routh expansion and balancing method., J. Franklin Inst., 331B, 367–380, 1994.
- Lucas, T.N., 1988. Scaled impulse energy approximation for model reduction, IEEE Trans.Automat. Contr., 133, 791-793, 1998.
- Manigandan T., Devarajan N. and Svanandam S.N. Design of PID controller using reduced order model, Academic Open Internet Journal, 15, 1-15, 2005.
- Pal, J., State reduced-order Padé approximants using Routh-Hurwitz array, Electron. Lett. , 15, 25-26, 1979.
- Parks, P.C, A new proof of the Routh-Hurwitz criterion using the second method of Lyapunov, Proc. Camb. Philos. Soc., 694-702, 1962.
- Pal, J., Improved Pade approximants using stability equation method, Electron. Lett., 19, 426-427, 1983.
- Puri, V. and Lam, D.P. , Stable model reduction by impulse response error minimization using Michailov criterion and Pade´ approximation, Trans. ASME J. Dyn. Syst. Meas.Control, 110, 389–394, 1988. [38]
- Rao, A.S.and Lamba, S.S. and Rao, S.V., Routh-approximant time domain reduced
- order modeling for single-input single-output systems, IEE Proc. Control Theory Appl., 125,1059- 1063, 1978.
- Singh, V., Obtaining Routh-Pade approximants using Luss-Jaakola algorithm, IEE Proc. Part I, 152.. 129-132, 2005.
- Singh, V. and Dinesh Chandra, and Kar, H., Improved Routh-Pade approximants: A computer –aided approach., IEEE Trans. Automat. Contr., 49, 292-295, 2004 .
- Singh V. Stable approximants for stable systems: A new approach, Proc. IEEE., 69, 1155- 1156, 1981.
- Singh, V., Improved stable Approximants using the Routh array, IEEE Trans. Automat. Contr., AC-26, 581-582, 1981.
- Singh V. Remarks on system simplification using the Routh stability array. Proc. IEEE.1981; 69: 662, 1981.
- Singh, V., Nonuniqueness of model reduction using the Routh approach, IEEE Trans. Autom. Control, 24, 650-651, 1979.
- Shamash, Y., Truncation method of reduction: a viable alternative, Electron. Lett. , 17, 97- 98, 1981.
- Shamash, Y., Model reduction usng the Routh stability criterion and the Pade
- approximation technique, Int. J. Control ,21, 475-484, 1975.
- Shamash, Y., Stable biased reduced-order models using the Routh method of Reduction, Int. J. Syst. Sci., 11, 641-654, 1980.
- Wan, B.W., Linear model reduction using Michailov criterion and Pade approximation techniques, Int. J.Control, 3, 1073-1089, 1981.
Year 2009,
Volume: 1 Issue: 2, 1 - 14, 01.06.2009
S. K. Mittal
D. Chandra
B. Dwivedi
References
- Appiah, R.K, Pade methods of Hurwitz polynomial approximation with application to linear system reduction, Int. J.Control. 29: 39-48, 1979.
- Ashoor, N. and Singh, V., A note on low order modeling, IEEE Trans. Automat. Contr. 27, 1124-1126, 1982.
- Ashoor, N. and Singh, V., Remarks on system simplification under consideration of time response, Electron. Lett., 18, 496-497, 1982.
- Bandyopadhyay, B. and Ismail, O and Gorez, R., Routh-Pade Approximation for Interval systems, IEEE Trans. Automat. Contr., 39(12),1994
- Bandyopadhyay, B. and Upadhye, A. and Ismail O., γ-δ Routh approximation for interval systems, IEEE Trans. Automat. Contr., 42(12), 1997.
- Bistritz, Y. and Shaked, U., Stable linear systems simplification via Pade approximations to Hurwitz polynomials, Trans. ASME J. Dyn. Syst. Meas.Control., 103, 279-284, 1981.
- Blakelock , J.H., Automatic control of aircraft and missiles, John wiley Inc. New york , 226- 235, 1965.
- Chen, T.C.and Chang, C.Y.and Han, K.W., Stable reduced-order Pade approximants using stability equation method, Electron. Lett., 16, 345-346,1980.
- Choo, Y. Improvement to modified Routh approximation method., Electron. Lett. , 35, 606- 607. 1999.
- Choo, Y., Improvement to modified Routh approximation method (correction), Electron. Lett., 1119, 1999.
- Choo, Y., Direct method for obtaining modified Routh approximants., Electron. Lett., 35, 627–1628 1999.
- Choo, Y., Improved bilinear Routh approximation method for discrete time systems, Trans. ASME J. Dyn. Syst. Meas. Control., 123, 125–127, 2001.
- Choo, Y., Equivalence of bilinear Routh and Schwarz approximation methods for discrete- time systems, Electron. Lett., 38, 761–762, 2002.
- Choo, Y. and Dongmin, K., SISO Continuous System Reduction via impulse response Gramian by iterative formulae, Trans. ASME J. Dyn. Syst. Meas. Contr., 128, 391-393, 2006.
- Dolgin, Y. and Zeheb, E., On Routh-Pade model reduction of interval systems, IEEE Trans. Autom. Control, 48, 1610–1612,2003.
- Deb., K., Multi-objective Optimization using Evolutionary Algorithm., New York, John Wiley and Sons Ltd., 2002.
- Douglas, J.M., Process dynamics and control vol.2 Control system synthesis,prentice Hall New Jersey 1972 chapter 7.
- Sastry, G.V.K.R. and Rao, G.R. and Rao, P.M. Large scale interval system modelling using Routh approximants, Electron. Lett., 36, 768–769, 2000. [19]
- Hutton, M.F. and Friedland, B., Routh approximations for reducing order of linear time
- invariant systems, IEEE Trans. Automat. Contr., AC-20, 329- 337, 1975.
- Hsieh, C.S and Hwang, C., Model reduction of continuous-time system using a modified Routh-approximation method, IEE Proc. D. Control Theory Appl., 136, 151–156 1989.
- Householder, A.S., The numerical treatment of single non-linear equation, McGraw-Hill Book Co., New -Newyork 1970.
- Hwang, C. and Hwang, J.H. and Guo, T.Y., Multifrequency Routh Approximants for linear systems, IEE Proc. Control Theory Applicat. , 142, 351-358, 1975.
- Hwang, C.Y. and Lee, Y.C., A new family of Routh approximants. Circuits Syst. Signal Process. , 16, 1-25, 1997. [24]
- Hwang, C. and Yang, S.F., Comments on the computation of interval Routh
- approximants., IEEE Trans. Autom. Control., 44, 1782–1787, 1999.
- Kelley, K.J., Aircraft manoeuvre optimization by reduced order approximation control and dynamic system (Ed:C.T. Leondes) , Academic Press London, 132-174, 1973.
- Krishnamurthy, V. and Sheshadri, V., Model reduction using Routh Stability criterion, IEEE Trans. Autom. Control. 1978; 23: 729-731.
- Krishnamurthy V. and V.Sheshadri V A simple and direct method of reduction order of linear systems using routh approximation in frequency domain IEEE Trans. Autom. Control. 21, 797-799, 1976.
- Luss, R.and Jaakola, T., Direct search and systematic reduction of size of search region. AICHE J., 19, 760-766, 1973.
- Lucas, T.N., The bilinear method: a new stability-preserving order reduction approach. Proc. Inst. Mech. Engg. I. J. Syst. Contr. Engg., 216, 429-436, 2002.
- Lucas, T.N., Constrained optimal Pade model reduction., ASME J .Dyna. Syst. Meas. Control, 119, 685-690, 1997.
- Lee, Y.C. and Hwang, C.and Hwang J.H., Model-reduction of SISO systems by Routh expansion and balancing method., J. Franklin Inst., 331B, 367–380, 1994.
- Lucas, T.N., 1988. Scaled impulse energy approximation for model reduction, IEEE Trans.Automat. Contr., 133, 791-793, 1998.
- Manigandan T., Devarajan N. and Svanandam S.N. Design of PID controller using reduced order model, Academic Open Internet Journal, 15, 1-15, 2005.
- Pal, J., State reduced-order Padé approximants using Routh-Hurwitz array, Electron. Lett. , 15, 25-26, 1979.
- Parks, P.C, A new proof of the Routh-Hurwitz criterion using the second method of Lyapunov, Proc. Camb. Philos. Soc., 694-702, 1962.
- Pal, J., Improved Pade approximants using stability equation method, Electron. Lett., 19, 426-427, 1983.
- Puri, V. and Lam, D.P. , Stable model reduction by impulse response error minimization using Michailov criterion and Pade´ approximation, Trans. ASME J. Dyn. Syst. Meas.Control, 110, 389–394, 1988. [38]
- Rao, A.S.and Lamba, S.S. and Rao, S.V., Routh-approximant time domain reduced
- order modeling for single-input single-output systems, IEE Proc. Control Theory Appl., 125,1059- 1063, 1978.
- Singh, V., Obtaining Routh-Pade approximants using Luss-Jaakola algorithm, IEE Proc. Part I, 152.. 129-132, 2005.
- Singh, V. and Dinesh Chandra, and Kar, H., Improved Routh-Pade approximants: A computer –aided approach., IEEE Trans. Automat. Contr., 49, 292-295, 2004 .
- Singh V. Stable approximants for stable systems: A new approach, Proc. IEEE., 69, 1155- 1156, 1981.
- Singh, V., Improved stable Approximants using the Routh array, IEEE Trans. Automat. Contr., AC-26, 581-582, 1981.
- Singh V. Remarks on system simplification using the Routh stability array. Proc. IEEE.1981; 69: 662, 1981.
- Singh, V., Nonuniqueness of model reduction using the Routh approach, IEEE Trans. Autom. Control, 24, 650-651, 1979.
- Shamash, Y., Truncation method of reduction: a viable alternative, Electron. Lett. , 17, 97- 98, 1981.
- Shamash, Y., Model reduction usng the Routh stability criterion and the Pade
- approximation technique, Int. J. Control ,21, 475-484, 1975.
- Shamash, Y., Stable biased reduced-order models using the Routh method of Reduction, Int. J. Syst. Sci., 11, 641-654, 1980.
- Wan, B.W., Linear model reduction using Michailov criterion and Pade approximation techniques, Int. J.Control, 3, 1073-1089, 1981.