Research Article
BibTex RIS Cite

Registration of interferometric DEM by deep artificial neural networks using GPS control points coordinates as network target

Year 2024, , 292 - 301, 28.07.2024
https://doi.org/10.26833/ijeg.1467293

Abstract

The interferometric Shuttle Radar Topography Mission (SRTM) satellite’s digital elevation model (DEM) is an important tool for studying topographic features on a medium-spacing scale. Data were collected and processed using the satellite’s orbital and navigation parameters with selected global GPS stations for verification. Distortion may be expressed by surveying measurements, such as position, distance, area, and shape. This study focuses on this distortion and proposes a new registration method to reduce its effect. Because of generality, the purpose shapes were excluded from this study. The proposed registration method depends on precise GPS control points that act as the ground truth for describing the considered surveying measurements. The processing was carried out using deep artificial neural networks (DANN) to produce a new registered DEM. A comparison was made between the original DEM and the new one, focusing on the selected surveying measurements. Another comparison was made between the GPS coordinates and SRTM polynomials to determine the potential of the proposed system. Some statistical investigations were applied to determine the level of significance of the distortion in each surveying measurement. The study shows that the distortion is highly significant; therefore, the proposed registration method is recommended to fix the distortion. An important finding is the enhancement in local coordinates scope.

References

  • Serwa, A., & Saleh, M. (2021). New semi-automatic 3D registration method for terrestrial laser scanning data of bridge structures based on artificial neural networks. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 787-798. https://doi.org/10.1016/j.ejrs.2021.06.003
  • Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., & Hensley, S. (2005). An assessment of the SRTM topographic products.
  • Chen, C., Yang, S., & Li, Y. (2020). Accuracy assessment and correction of SRTM DEM using ICESat/GLAS data under data coregistration. Remote Sensing, 12(20), 3435. https://doi.org/10.3390/rs12203435
  • Su, Y., & Guo, Q. (2014). A practical method for SRTM DEM correction over vegetated mountain areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 216-228. https://doi.org/10.1016/j.isprsjprs.2013.11.009
  • Su, Y., Guo, Q., Ma, Q., & Li, W. (2015). SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. Remote Sensing, 7(9), 11202-11225. https://doi.org/10.3390/rs70911202
  • Ochoa, C. G., Vives, L., Zimmermann, E., Masson, I., Fajardo, L., & Scioli, C. (2019). Analysis and correction of digital elevation models for plain areas. Photogrammetric Engineering & Remote Sensing, 85(3), 209-219. https://doi.org/10.14358/PERS.85.3.209
  • Zhou, C., Zhang, G., Yang, Z., Ao, M., Liu, Z., & Zhu, J. (2020). An adaptive terrain-dependent method for SRTM DEM correction over mountainous areas. IEEE Access, 8, 130878-130887. https://doi.org/10.1109/ACCESS.2020.3009851
  • Julzarika, A., Harintaka, H., & Kartika, T. (2021). Vegetation Height Estimation using Satellite Remote Sensing in Peat Land of Central Kalimantan. Journal of Environmental Analysis and Progress, 6(1), 24-34. https://doi.org/10.24221/jeap.6.1.2021.3001.024-034
  • Serwa, A., & El-Semary, H. H. (2020). Semi-automatic general approach to achieve the practical number of clusters for classification of remote sensing MS satellite images. Spatial Information Research, 28(2), 203-213. https://doi.org/10.1007/s41324-019-00283-z
  • Serwa, A. (2022). Development of soft computational simulator for optimized deep artificial neural networks for geomatics applications: remote sensing classification as an application. Geodesy and Cartography, 48(4), 224-232. https://doi.org/10.3846/gac.2022.15642
  • 1Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172. https://doi.org/10.26833/ijeg.1110560
  • Bildirici, İ. Ö., & Abbak, R. A. (2020). Türkiye ve çevresinde SRTM sayısal yükseklik modelinin doğruluğu. Geomatik, 5(1), 1-9. https://doi.org/10.29128/geomatik.551071
  • Çubukçu, E. A., Demir, V., & Sevimli, M. F. (2022). Digital elevation modeling using artificial neural networks, deterministic and geostatistical interpolation methods. Turkish Journal of Engineering, 6(3), 199-205. https://doi.org/10.31127/tuje.889570
  • Yakar, M. (2009). Digital elevation model generation by robotic total station instrument. Experimental Techniques, 33(2), 52-59. https://doi.org/10.1111/j.1747-1567.2008.00375.x
  • Yalçın, C. (2022). DEM and GIS-based assessment of structural elements in the collision zone: Çağlayancerit, Kahramanmaraş (Türkiye). Advanced Remote Sensing, 2(2), 66-73.
  • Yılmaz, A., & Erdoğan, M. (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98-107. https://doi.org/10.26833/ijeg.384822
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34, 23-29. https://doi.org/10.1111/j.1747-1567.2009.00553.x
  • Sariturk, B., Bayram, B., Duran, Z., & Seker, D. Z. (2020). Feature extraction from satellite images using segnet and fully convolutional networks (FCN). International Journal of Engineering and Geosciences, 5(3), 138-143. https://doi.org/10.26833/ijeg.645426
  • Yakar, M., Yilmaz, H. M., & Mutluoglu, O. (2014). Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavtion and filling areas. Arabian Journal for Science and Engineering, 39, 387-394. https://doi.org/10.1007/s13369-013-0853-1
  • Browning Jr, D. C. (2024). Close-range photogrammetry for analysis of rock relief details: An investigation of symbols purported to be Jewish Menorahs in Rough Cilicia. Mersin Photogrammetry Journal, 6(1), 39-51. https://doi.org/10.53093/mephoj.1434605
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray Turkey). Environmental Earth Sciences, 66, 75-81. https://doi.org/10.1007/s12665-011-1208-4
  • Serwa, A. (2017). Optimizing activation function in deep artificial neural networks approach for landcover fuzzy pixel-based classification. International Journal of Remote Sensing Applications, 7, 1-10. https://doi.org/10.14355/ijrsa.2017.07.001
  • Ismail, S. A., Serwa, A., Abood, A., Fayed, B., Ismail, S. A., & Hashem, A. M. (2019). A Study of the Use of Deep Artificial Neural Network in the Optimization of the Production of Antifungal Exochitinase Compared with the Response Surface Methodology. Jordan Journal of Biological Sciences, 12(5), 543-551.
Year 2024, , 292 - 301, 28.07.2024
https://doi.org/10.26833/ijeg.1467293

Abstract

References

  • Serwa, A., & Saleh, M. (2021). New semi-automatic 3D registration method for terrestrial laser scanning data of bridge structures based on artificial neural networks. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 787-798. https://doi.org/10.1016/j.ejrs.2021.06.003
  • Rodriguez, E., Morris, C. S., Belz, J. E., Chapin, E. C., Martin, J. M., Daffer, W., & Hensley, S. (2005). An assessment of the SRTM topographic products.
  • Chen, C., Yang, S., & Li, Y. (2020). Accuracy assessment and correction of SRTM DEM using ICESat/GLAS data under data coregistration. Remote Sensing, 12(20), 3435. https://doi.org/10.3390/rs12203435
  • Su, Y., & Guo, Q. (2014). A practical method for SRTM DEM correction over vegetated mountain areas. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 216-228. https://doi.org/10.1016/j.isprsjprs.2013.11.009
  • Su, Y., Guo, Q., Ma, Q., & Li, W. (2015). SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. Remote Sensing, 7(9), 11202-11225. https://doi.org/10.3390/rs70911202
  • Ochoa, C. G., Vives, L., Zimmermann, E., Masson, I., Fajardo, L., & Scioli, C. (2019). Analysis and correction of digital elevation models for plain areas. Photogrammetric Engineering & Remote Sensing, 85(3), 209-219. https://doi.org/10.14358/PERS.85.3.209
  • Zhou, C., Zhang, G., Yang, Z., Ao, M., Liu, Z., & Zhu, J. (2020). An adaptive terrain-dependent method for SRTM DEM correction over mountainous areas. IEEE Access, 8, 130878-130887. https://doi.org/10.1109/ACCESS.2020.3009851
  • Julzarika, A., Harintaka, H., & Kartika, T. (2021). Vegetation Height Estimation using Satellite Remote Sensing in Peat Land of Central Kalimantan. Journal of Environmental Analysis and Progress, 6(1), 24-34. https://doi.org/10.24221/jeap.6.1.2021.3001.024-034
  • Serwa, A., & El-Semary, H. H. (2020). Semi-automatic general approach to achieve the practical number of clusters for classification of remote sensing MS satellite images. Spatial Information Research, 28(2), 203-213. https://doi.org/10.1007/s41324-019-00283-z
  • Serwa, A. (2022). Development of soft computational simulator for optimized deep artificial neural networks for geomatics applications: remote sensing classification as an application. Geodesy and Cartography, 48(4), 224-232. https://doi.org/10.3846/gac.2022.15642
  • 1Altunel, A. O. (2023). The effect of DEM resolution on topographic wetness index calculation and visualization: An insight to the hidden danger unraveled in Bozkurt in August, 2021. International Journal of Engineering and Geosciences, 8(2), 165-172. https://doi.org/10.26833/ijeg.1110560
  • Bildirici, İ. Ö., & Abbak, R. A. (2020). Türkiye ve çevresinde SRTM sayısal yükseklik modelinin doğruluğu. Geomatik, 5(1), 1-9. https://doi.org/10.29128/geomatik.551071
  • Çubukçu, E. A., Demir, V., & Sevimli, M. F. (2022). Digital elevation modeling using artificial neural networks, deterministic and geostatistical interpolation methods. Turkish Journal of Engineering, 6(3), 199-205. https://doi.org/10.31127/tuje.889570
  • Yakar, M. (2009). Digital elevation model generation by robotic total station instrument. Experimental Techniques, 33(2), 52-59. https://doi.org/10.1111/j.1747-1567.2008.00375.x
  • Yalçın, C. (2022). DEM and GIS-based assessment of structural elements in the collision zone: Çağlayancerit, Kahramanmaraş (Türkiye). Advanced Remote Sensing, 2(2), 66-73.
  • Yılmaz, A., & Erdoğan, M. (2018). Designing high resolution countrywide DEM for Turkey. International Journal of Engineering and Geosciences, 3(3), 98-107. https://doi.org/10.26833/ijeg.384822
  • Yakar, M., Yilmaz, H. M., & Yurt, K. (2010). The effect of grid resolution in defining terrain surface. Experimental Techniques, 34, 23-29. https://doi.org/10.1111/j.1747-1567.2009.00553.x
  • Sariturk, B., Bayram, B., Duran, Z., & Seker, D. Z. (2020). Feature extraction from satellite images using segnet and fully convolutional networks (FCN). International Journal of Engineering and Geosciences, 5(3), 138-143. https://doi.org/10.26833/ijeg.645426
  • Yakar, M., Yilmaz, H. M., & Mutluoglu, O. (2014). Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavtion and filling areas. Arabian Journal for Science and Engineering, 39, 387-394. https://doi.org/10.1007/s13369-013-0853-1
  • Browning Jr, D. C. (2024). Close-range photogrammetry for analysis of rock relief details: An investigation of symbols purported to be Jewish Menorahs in Rough Cilicia. Mersin Photogrammetry Journal, 6(1), 39-51. https://doi.org/10.53093/mephoj.1434605
  • Yilmaz, H. M., Yakar, M., Mutluoglu, O., Kavurmaci, M. M., & Yurt, K. (2012). Monitoring of soil erosion in Cappadocia region (Selime-Aksaray Turkey). Environmental Earth Sciences, 66, 75-81. https://doi.org/10.1007/s12665-011-1208-4
  • Serwa, A. (2017). Optimizing activation function in deep artificial neural networks approach for landcover fuzzy pixel-based classification. International Journal of Remote Sensing Applications, 7, 1-10. https://doi.org/10.14355/ijrsa.2017.07.001
  • Ismail, S. A., Serwa, A., Abood, A., Fayed, B., Ismail, S. A., & Hashem, A. M. (2019). A Study of the Use of Deep Artificial Neural Network in the Optimization of the Production of Antifungal Exochitinase Compared with the Response Surface Methodology. Jordan Journal of Biological Sciences, 12(5), 543-551.
There are 23 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Articles
Authors

Ahmed Serwa 0000-0002-5121-5242

Abdul Baser Qasimi 0000-0001-9180-831X

Vahid Isazade 0000-0002-6348-4028

Early Pub Date July 25, 2024
Publication Date July 28, 2024
Submission Date April 9, 2024
Acceptance Date May 6, 2024
Published in Issue Year 2024

Cite

APA Serwa, A., Qasimi, A. B., & Isazade, V. (2024). Registration of interferometric DEM by deep artificial neural networks using GPS control points coordinates as network target. International Journal of Engineering and Geosciences, 9(2), 292-301. https://doi.org/10.26833/ijeg.1467293
AMA Serwa A, Qasimi AB, Isazade V. Registration of interferometric DEM by deep artificial neural networks using GPS control points coordinates as network target. IJEG. July 2024;9(2):292-301. doi:10.26833/ijeg.1467293
Chicago Serwa, Ahmed, Abdul Baser Qasimi, and Vahid Isazade. “Registration of Interferometric DEM by Deep Artificial Neural Networks Using GPS Control Points Coordinates As Network Target”. International Journal of Engineering and Geosciences 9, no. 2 (July 2024): 292-301. https://doi.org/10.26833/ijeg.1467293.
EndNote Serwa A, Qasimi AB, Isazade V (July 1, 2024) Registration of interferometric DEM by deep artificial neural networks using GPS control points coordinates as network target. International Journal of Engineering and Geosciences 9 2 292–301.
IEEE A. Serwa, A. B. Qasimi, and V. Isazade, “Registration of interferometric DEM by deep artificial neural networks using GPS control points coordinates as network target”, IJEG, vol. 9, no. 2, pp. 292–301, 2024, doi: 10.26833/ijeg.1467293.
ISNAD Serwa, Ahmed et al. “Registration of Interferometric DEM by Deep Artificial Neural Networks Using GPS Control Points Coordinates As Network Target”. International Journal of Engineering and Geosciences 9/2 (July 2024), 292-301. https://doi.org/10.26833/ijeg.1467293.
JAMA Serwa A, Qasimi AB, Isazade V. Registration of interferometric DEM by deep artificial neural networks using GPS control points coordinates as network target. IJEG. 2024;9:292–301.
MLA Serwa, Ahmed et al. “Registration of Interferometric DEM by Deep Artificial Neural Networks Using GPS Control Points Coordinates As Network Target”. International Journal of Engineering and Geosciences, vol. 9, no. 2, 2024, pp. 292-01, doi:10.26833/ijeg.1467293.
Vancouver Serwa A, Qasimi AB, Isazade V. Registration of interferometric DEM by deep artificial neural networks using GPS control points coordinates as network target. IJEG. 2024;9(2):292-301.