Research Article
BibTex RIS Cite
Year 2022, Volume: 7 Issue: 1, 9 - 16, 15.02.2022
https://doi.org/10.26833/ijeg.833260

Abstract

References

  • Ahmed B, Kamruzzaman M, Zhu X, Rahman M S & Choi K (2013). Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing, 5(11), 5969-5998. https://doi.org/10.3390/rs5115969
  • Alexander C (2020). Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST). International Journal of Applied Earth Observation and Geoinformation, 86, 102013. https://doi.org/10.1016/j.jag.2019.102013
  • Alibakhshi Z, Ahmadi M& Farajzadeh Asl M (2020). Modeling Biophysical Variables and Land Surface Temperature Using the GWR Model: Case Study—Tehran and Its Satellite Cities. Journal of Indian Society of Remote Sensing,48, 59–70. https://doi.org/10.1007/s12524-019-01062-x
  • Ali J M, Marsh S H& Smith M J (2017). A comparison between London and Baghdad surface urban heat islands and possible engineering mitigation solutions. Sustainable Cities and Society, 29, 159-168. https://doi.org/10.1016/j.scs.2016.12.010
  • As-syakur A R, Adnyana I W S, Arthana I W & Nuarsa I W (2012). Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an Urban Area. Remote Sensing, 4(10), 2957-2970. https://doi.org/10.3390/rs4102957
  • Barsi J, Schott J, Hook S, Raqueno N, Markham B& Radocinski R (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607-11626.
  • Carlson T N& Ripley D A (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sensing of Environment, 62, 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  • Chen X L, Zhao H M, Li P X& Yi Z Y (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146. https://doi.org/10.1016/j.rse.2005.11.016
  • Chen X& Zhang Y (2017). Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustainable Cities and Society, 32, 87-99. https://doi.org/10.1016/j.scs.2017.03.013
  • Essa W, Verbeiren B, Van der Kwast J, Van de Voorde T& Batelaan O (2012). Evaluation of the DisTrad thermal sharpening methodology for urban areas. International Journal of Applied Earth Observation and Geoinformation, 19, 163-172. https://doi.org/10.1016/j.jag.2012.05.010
  • Guha S, Govil H, Dey A & Gill N (2020a). A case study on the relationship between land surface temperature and land surface indices in Raipur City, India. Geografisk Tidsskrift-Danish Journal of Geography, 120(1), 35-50. https://doi.org/10.1080/00167223.2020.1752272
  • Guha S, Govil H, Gill N & Dey A (2020b). Analytical study on the relationship between land surface temperature and land use/land cover indices. Annals of GIS, 26(2), 201-216. https://doi.org/10.1080/19475683.2020.1754291
  • Guha S, Govil H & Mukherjee S (2017). Dynamic analysis and ecological evaluation of urban heat islands in Raipur city, India. Journal of Applied Remote Sensing, 11(3), 036020. https://doi:10.1117/1.JRS.11.036020
  • Guo G, Wu Z& Chen Y (2014). Estimation of subpixel land surface temperature using Landsat TM imagery: A case examination over a heterogeneous urban area. Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Changsha, p. 304-308. https://doi.org/10.1109/EORSA.2014.6927900
  • Guo G, Wu Z, Xiao R, Chen Y, Liu X& Zhang X (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1-10. https://doi.org/10.1016/j.landurbplan.2014.11.007
  • Hao X, Li W& Deng H (2016). The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. Scientific Reports, 6, 35418. https://doi.org/10.1038/srep35418
  • Jain S, Sannigrahi S, Sen S, Bhatt S, Chakraborti S& Rahmat S (2020). Urban heat island intensity and its mitigation strategies in the fast-growing urban area. Journal of Urban Management, 9(1), 54-66. https://doi.org/10.1016/j.jum.2019.09.004
  • Li J (2006). Estimating land surface temperature from Landsat-5 TM. Remote Sensing Technology and Application, 21, 322-326.
  • Li Z N, Duan S B, Tang B H, Wu H, Ren H G& Yan G J (2016). Review of methods for land surface temperature derived from thermal infrared remotely sensed data. Journal of Remote Sensing, 20, 899–920.
  • Macarof P, Bîrlica I C& Stătescu F (2017). Investigating the relationship between land surface temperature and urban indices using landsat-8: a case study of Iaşi. Lucrările Seminarului Geografic Dimitrie Cantemir, 45, 81-88. https://doi.org/10.15551/lsgdc.v45i0.07
  • Mushore T D, Odindi J, Dube T& Mutanga O (2017). Prediction of future urban surface temperatures using medium resolution satellite data in Harare metropolitan city, Zimbabwe. Building and Environment, 122, 397-410. https://doi.org/10.1016/j.buildenv.2017.06.033
  • Nimish G, Bharath H A& Lalitha A (2020). Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sensing Application: Society and Environment, 18, 100299. https://doi.org/10.1016/j.rsase.2020.100299
  • Qin Z, Karnieli A& Barliner P (2001). A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. International Journal of Remote Sensing, 22(18), 3719-3746. https://doi:10.1080/01431160010006971
  • Sekertekin A, Kutoglu SH & Kaya S (2016). Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environmental Monitoring and Assessment, 188, 30. https://doi.org/10.1007/s10661-015-5032-2
  • Sharma R, Ghosh A& Joshi P K (2013). Mapping environmental impacts of rapid urbanization in the National Capital Region of India using remote sensing inputs. Geocarto International, 28(5), 420-438. https://doi.org/10.1080/10106049.2012.715208
  • Sharma R& Joshi P K (2016). Mapping environmental impacts of rapid urbanization in the National Capital Region of India using remote sensing inputs. Urban Climate, 15, 70-82. https://doi.org/10.1016/j.uclim.2016.01.004
  • Sobrino J A, Raissouni N& Li Z (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment,75(2), 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1
  • Sobrino J A, Jimenez-Munoz J C & Paolini L (2004). Land surface temperature retrieval from Landsat TM5.Remote Sensing of Environment, 9, 434–440. https://doi:10.1016/j.rse.2004.02.003
  • Sun Q, Tan J & Xu Y (2010). An ERDAS image processing method for retrieving LST and describing urban heat evolution: A case study in the Pearl River Delta Region in South China. Environmental Earth Science, 59, 1047-1055.
  • Tomlinson C J, Chapman L, Trones J E& Baker C (2011). Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Application, 118, 296–306. https://doi.org/10.1002/met.287
  • URL-1: hthttp://www.surveyofindia.gov.in
  • URL-2: http://www.raipur.gov.in
  • URL-3: https://www.earthexplorer.usgs.gov
  • URL-4: http://www.imdraipur.gov.in
  • Vlassova L, Perez-Cabello F, Nieto H, Martín P, Riaño D, & De La Riva J (2014). Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sensing, 6(5), 4345-4368.
  • Wukelic G E, Gibbons D E, Martucci L M&Foote H P (1989). Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sensing of Environment, 28, 339–347. https://doi.org/10.1016/0034-4257(89)90125-9
  • Yang J& Que J (1996). The empirical expressions of the relation between precipitable water and ground water vapor pressure for some areas in China.Scientia Atmospherica Sinica, 20, 620-626.
  • Zanter K (2019). Landsat 8 (L8) Data Users Handbook; EROS: Sioux Falls, SD, USA.
  • Zhao H M & Chen X L (2005). Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Geoscience and Remote Sensing Symposium. 3 (25–29), p.1666−1668. https://doi.org/10.1109/IGARSS.2005.1526319

Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series

Year 2022, Volume: 7 Issue: 1, 9 - 16, 15.02.2022
https://doi.org/10.26833/ijeg.833260

Abstract

The present study analyzes the seasonal variability of the relationship between the land surface temperature (LST) and normalized difference bareness index (NDBaI) on different land use/land cover (LULC) in Raipur City, India by using sixty-five Landsat images of four seasons (pre-monsoon, monsoon, post-monsoon, and winter) of 1991-1992, 1995-1996, 1999-2000, 2004-2005, 2009-2010, 2014-2015, and 2018-2019. The mono-window algorithm was used to retrieve LST and Pearson's correlation coefficient was used to generate the LST-NDBaI relationship. The post-monsoon season builds the best correlation (0.59) among the four seasons. The water bodies builds a moderate to strong positive correlation (>0.50) in all the four seasons. On green vegetation, this correlation is moderate to strong positive (>0.54) in the three seasons, except the pre-monsoon season. The built-up area and bare land generate a moderate positive correlation (>0.34) in all the four seasons. Among the four seasons, the post-monsoon season builds the best correlation for all LULC types, whereas the pre-monsoon season has the least correlation. This research work is useful for environmental planning of other citieswith similar climatic conditions.

References

  • Ahmed B, Kamruzzaman M, Zhu X, Rahman M S & Choi K (2013). Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing, 5(11), 5969-5998. https://doi.org/10.3390/rs5115969
  • Alexander C (2020). Normalised difference spectral indices and urban land cover as indicators of land surface temperature (LST). International Journal of Applied Earth Observation and Geoinformation, 86, 102013. https://doi.org/10.1016/j.jag.2019.102013
  • Alibakhshi Z, Ahmadi M& Farajzadeh Asl M (2020). Modeling Biophysical Variables and Land Surface Temperature Using the GWR Model: Case Study—Tehran and Its Satellite Cities. Journal of Indian Society of Remote Sensing,48, 59–70. https://doi.org/10.1007/s12524-019-01062-x
  • Ali J M, Marsh S H& Smith M J (2017). A comparison between London and Baghdad surface urban heat islands and possible engineering mitigation solutions. Sustainable Cities and Society, 29, 159-168. https://doi.org/10.1016/j.scs.2016.12.010
  • As-syakur A R, Adnyana I W S, Arthana I W & Nuarsa I W (2012). Enhanced Built-Up and Bareness Index (EBBI) for Mapping Built-Up and Bare Land in an Urban Area. Remote Sensing, 4(10), 2957-2970. https://doi.org/10.3390/rs4102957
  • Barsi J, Schott J, Hook S, Raqueno N, Markham B& Radocinski R (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607-11626.
  • Carlson T N& Ripley D A (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sensing of Environment, 62, 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
  • Chen X L, Zhao H M, Li P X& Yi Z Y (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 104(2), 133–146. https://doi.org/10.1016/j.rse.2005.11.016
  • Chen X& Zhang Y (2017). Impacts of urban surface characteristics on spatiotemporal pattern of land surface temperature in Kunming of China. Sustainable Cities and Society, 32, 87-99. https://doi.org/10.1016/j.scs.2017.03.013
  • Essa W, Verbeiren B, Van der Kwast J, Van de Voorde T& Batelaan O (2012). Evaluation of the DisTrad thermal sharpening methodology for urban areas. International Journal of Applied Earth Observation and Geoinformation, 19, 163-172. https://doi.org/10.1016/j.jag.2012.05.010
  • Guha S, Govil H, Dey A & Gill N (2020a). A case study on the relationship between land surface temperature and land surface indices in Raipur City, India. Geografisk Tidsskrift-Danish Journal of Geography, 120(1), 35-50. https://doi.org/10.1080/00167223.2020.1752272
  • Guha S, Govil H, Gill N & Dey A (2020b). Analytical study on the relationship between land surface temperature and land use/land cover indices. Annals of GIS, 26(2), 201-216. https://doi.org/10.1080/19475683.2020.1754291
  • Guha S, Govil H & Mukherjee S (2017). Dynamic analysis and ecological evaluation of urban heat islands in Raipur city, India. Journal of Applied Remote Sensing, 11(3), 036020. https://doi:10.1117/1.JRS.11.036020
  • Guo G, Wu Z& Chen Y (2014). Estimation of subpixel land surface temperature using Landsat TM imagery: A case examination over a heterogeneous urban area. Third International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Changsha, p. 304-308. https://doi.org/10.1109/EORSA.2014.6927900
  • Guo G, Wu Z, Xiao R, Chen Y, Liu X& Zhang X (2015). Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1-10. https://doi.org/10.1016/j.landurbplan.2014.11.007
  • Hao X, Li W& Deng H (2016). The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. Scientific Reports, 6, 35418. https://doi.org/10.1038/srep35418
  • Jain S, Sannigrahi S, Sen S, Bhatt S, Chakraborti S& Rahmat S (2020). Urban heat island intensity and its mitigation strategies in the fast-growing urban area. Journal of Urban Management, 9(1), 54-66. https://doi.org/10.1016/j.jum.2019.09.004
  • Li J (2006). Estimating land surface temperature from Landsat-5 TM. Remote Sensing Technology and Application, 21, 322-326.
  • Li Z N, Duan S B, Tang B H, Wu H, Ren H G& Yan G J (2016). Review of methods for land surface temperature derived from thermal infrared remotely sensed data. Journal of Remote Sensing, 20, 899–920.
  • Macarof P, Bîrlica I C& Stătescu F (2017). Investigating the relationship between land surface temperature and urban indices using landsat-8: a case study of Iaşi. Lucrările Seminarului Geografic Dimitrie Cantemir, 45, 81-88. https://doi.org/10.15551/lsgdc.v45i0.07
  • Mushore T D, Odindi J, Dube T& Mutanga O (2017). Prediction of future urban surface temperatures using medium resolution satellite data in Harare metropolitan city, Zimbabwe. Building and Environment, 122, 397-410. https://doi.org/10.1016/j.buildenv.2017.06.033
  • Nimish G, Bharath H A& Lalitha A (2020). Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sensing Application: Society and Environment, 18, 100299. https://doi.org/10.1016/j.rsase.2020.100299
  • Qin Z, Karnieli A& Barliner P (2001). A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. International Journal of Remote Sensing, 22(18), 3719-3746. https://doi:10.1080/01431160010006971
  • Sekertekin A, Kutoglu SH & Kaya S (2016). Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey. Environmental Monitoring and Assessment, 188, 30. https://doi.org/10.1007/s10661-015-5032-2
  • Sharma R, Ghosh A& Joshi P K (2013). Mapping environmental impacts of rapid urbanization in the National Capital Region of India using remote sensing inputs. Geocarto International, 28(5), 420-438. https://doi.org/10.1080/10106049.2012.715208
  • Sharma R& Joshi P K (2016). Mapping environmental impacts of rapid urbanization in the National Capital Region of India using remote sensing inputs. Urban Climate, 15, 70-82. https://doi.org/10.1016/j.uclim.2016.01.004
  • Sobrino J A, Raissouni N& Li Z (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment,75(2), 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1
  • Sobrino J A, Jimenez-Munoz J C & Paolini L (2004). Land surface temperature retrieval from Landsat TM5.Remote Sensing of Environment, 9, 434–440. https://doi:10.1016/j.rse.2004.02.003
  • Sun Q, Tan J & Xu Y (2010). An ERDAS image processing method for retrieving LST and describing urban heat evolution: A case study in the Pearl River Delta Region in South China. Environmental Earth Science, 59, 1047-1055.
  • Tomlinson C J, Chapman L, Trones J E& Baker C (2011). Remote sensing land surface temperature for meteorology and climatology: a review. Meteorological Application, 118, 296–306. https://doi.org/10.1002/met.287
  • URL-1: hthttp://www.surveyofindia.gov.in
  • URL-2: http://www.raipur.gov.in
  • URL-3: https://www.earthexplorer.usgs.gov
  • URL-4: http://www.imdraipur.gov.in
  • Vlassova L, Perez-Cabello F, Nieto H, Martín P, Riaño D, & De La Riva J (2014). Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sensing, 6(5), 4345-4368.
  • Wukelic G E, Gibbons D E, Martucci L M&Foote H P (1989). Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sensing of Environment, 28, 339–347. https://doi.org/10.1016/0034-4257(89)90125-9
  • Yang J& Que J (1996). The empirical expressions of the relation between precipitable water and ground water vapor pressure for some areas in China.Scientia Atmospherica Sinica, 20, 620-626.
  • Zanter K (2019). Landsat 8 (L8) Data Users Handbook; EROS: Sioux Falls, SD, USA.
  • Zhao H M & Chen X L (2005). Use of normalized difference bareness index in quickly mapping bare areas from TM/ETM+. Geoscience and Remote Sensing Symposium. 3 (25–29), p.1666−1668. https://doi.org/10.1109/IGARSS.2005.1526319
There are 39 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Subhanil Guha 0000-0002-2967-7248

Himanshu Govil This is me

Publication Date February 15, 2022
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Guha, S., & Govil, H. (2022). Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. International Journal of Engineering and Geosciences, 7(1), 9-16. https://doi.org/10.26833/ijeg.833260
AMA Guha S, Govil H. Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. IJEG. February 2022;7(1):9-16. doi:10.26833/ijeg.833260
Chicago Guha, Subhanil, and Himanshu Govil. “Estimating the Seasonal Relationship Between Land Surface Temperature and Normalized Difference Bareness Index Using Landsat Data Series”. International Journal of Engineering and Geosciences 7, no. 1 (February 2022): 9-16. https://doi.org/10.26833/ijeg.833260.
EndNote Guha S, Govil H (February 1, 2022) Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. International Journal of Engineering and Geosciences 7 1 9–16.
IEEE S. Guha and H. Govil, “Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series”, IJEG, vol. 7, no. 1, pp. 9–16, 2022, doi: 10.26833/ijeg.833260.
ISNAD Guha, Subhanil - Govil, Himanshu. “Estimating the Seasonal Relationship Between Land Surface Temperature and Normalized Difference Bareness Index Using Landsat Data Series”. International Journal of Engineering and Geosciences 7/1 (February 2022), 9-16. https://doi.org/10.26833/ijeg.833260.
JAMA Guha S, Govil H. Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. IJEG. 2022;7:9–16.
MLA Guha, Subhanil and Himanshu Govil. “Estimating the Seasonal Relationship Between Land Surface Temperature and Normalized Difference Bareness Index Using Landsat Data Series”. International Journal of Engineering and Geosciences, vol. 7, no. 1, 2022, pp. 9-16, doi:10.26833/ijeg.833260.
Vancouver Guha S, Govil H. Estimating the seasonal relationship between land surface temperature and normalized difference bareness index using Landsat data series. IJEG. 2022;7(1):9-16.

Cited By