Research Article
BibTex RIS Cite

Evaluation of the high-degree global gravity field models in the territory of Kazakhstan

Year 2025, Volume: 10 Issue: 1, 14 - 21
https://doi.org/10.26833/ijeg.1485621

Abstract

In the territory of the Republic of Kazakhstan, the national project is currently being implemented Development of a Geoid Model of the Republic of Kazakhstan as a Basis for an Integrated State System of Coordinates and Heights, according to which the relevant model of the geoid for the territory of Kazakhstan will be formed and the gravity calibration line will be established to calibrate relative gravimeters. In this regard, a relevant scientific problem aims to select the optimal high-degree global gravity field model, which should best describe the long-wave component of the geoid model for the Republic of Kazakhstan. To select the optimal model were made the comparisons of the calculated height anomalies and the components of deflection of the vertical (DOV) obtained from global geopotential models XGM2019e_2159, SGG-UGM-2, SGG-UGM-1, ЕGM2008, GECO and EIGEN-6C4 with terrestrial precision measurements. In total, 59 Laplace stations and 154 high-precision levelling stations were involved in the precision analysis. Modelling of the characteristics of the Earth’s gravity was performed with software developed at the physical geodesy laboratory of the Siberian State University of Geosystems and Technologies.
The study results suggest that the high-degree global geopotential models have an approximately common modeling error, which has a negative average value from –0.092 to –0.123 m. It may indicate a regular drift in the system of normal heights and the difference between the actual W0 and the normal U0 of potentials. In addition to the constant shift, there is a positive drift from west to east and north to south, which may indicate the accumulation of systematic errors in the geometric leveling method. The standard deviation of the component of deflection of the vertical in the plane of meridian Δ in the regions with the altitudes less than 500 m varies from 0.93 to 1.13 arcseconds, in the regions with the altitudes greater than 500 m, from 1.26 to 1.54 arcseconds, while the standard deviation of the component of the deflection of the vertical in the plane of the first vertical Δ in the regions with the altitudes less than 500 m varies from 0.70 to 0.84 arcseconds, in the regions with the altitudes greater than 500 m, from 0.62 to 0.81 arcseconds.
Based on the results given in Table 4, with the selection criteria being standard deviations, range, and mean values, the model SGG-UGM-2 was chosen the optimal high-degree global geopotential model which best describes the long-wave component of the model of the geoid for the Republic of Kazakhstan.

Project Number

The research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. BR21882366)

References

  • Sichugova, L., & Fazilova, D. (2024). Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. International Journal of Engineering and Geosciences, 9(1), 1-11. https://doi.org/10.26833/ijeg.1192118
  • Bezcioğlu, M., Ucar, T., & Yiğit, C. Ö. (2023). Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences, 8(3), 251-261. https://doi.org/10.26833/ijeg.1140959
  • Yurdakul, Ö., & Kalaycı, İ. (2022). The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. International Journal of Engineering and Geosciences, 7(3), 229-246. https://doi.org/10.26833/ijeg.975204
  • Karadeniz, B., Pehlivan, H. ., Altıntaş, A. F., & Usta, S. . (2024). Comparison of Network-RTK and PPP Technique in terms of Position Accuracy. Advanced Geomatics, 4(1), 31–36. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/1189
  • Müller, J., Dirkx, D., Kopeikin, S. M., Lion, G., Panet, I., Petit, G., & Visser, P. N. A. M. (2018). High Performance Clocks and Gravity Field Determination. Space Science Reviews, 214(1), 5. https://doi.org/10.1007/s11214-017-0431-z
  • Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., & Schuh, H. (2019). ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 11(2), 647–674. https://doi.org/10.5194/essd-11-647-2019
  • Liang, W., Li, J., Xu, X., Zhang, S., & Zhao, Y. (2020). A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering, 6(8), 860–878. https://doi.org/10.1016/j.eng.2020.05.008
  • Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 66. https://doi.org/10.1007/s00190-020-01398-0
  • Liang, W., Xu, X., Li, J., & Zhu, G. (2018). The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 47, 425–434. https://doi.org/10.11947/j.AGCS.2018.20170269
  • Xu, X., Zhao, Y., Reubelt, T., & Tenzer, R. (2017). A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geodesy and Geodynamics, 8(4), 260–272. https://doi.org/10.1016/j.geog.2017.03.013
  • Gilardoni, M., Reguzzoni, M., & Sampietro, D. (2016). GECO: A global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60(2), 228–247. https://doi.org/10.1007/s11200-015-1114-4
  • Förste, C., Bruinsma, Sean. L., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (p. 55102156 Bytes, 3 Files). GFZ Data Services. https://doi.org/10.5880/ICGEM.2015.1
  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008916
  • Foroughi, I., Afrasteh, Y., Ramouz, S., & Safari, A. (2017). Local Evaluation of Earth Gravitational Models, Case Study: Iran. Geodesy and Cartography, 43(1), 1–13. https://doi.org/10.3846/20296991.2017.1299839
  • Dawod, G. M., Mohamed, H. F., & Al-Krargy, E. M. (2019). Accuracy assessment of the PGM17 global geopotential model: A case study of Egypt and Northeast Africa. Arabian Journal of Geosciences, 12(7), 246. https://doi.org/10.1007/s12517-019-4418-9
  • Yilmaz, M., Turgut, B., Gullu, M., & Yilmaz, I. (2016). Evaluation of Recent Global Geopotential Models by GNSS/Levelling Data: Intenal Aegean Region. International Journal of Engineering and Geosciences, 1(1), 15–19. https://doi.org/10.26833/ijeg.285221
  • Yilmaz M. (2019). The comparison of global gravity models with terrestrial gravity data over western Anatolia. Bulletin of Geophysics and Oceanography, 60(3), 475–488. https://doi.org/10.4430/bgta0277
  • Lee Jisun, & Hyoun, K. (n.d.). Precision evaluation of recent global geopotential models based on GNSS/leveling data on unified control points. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(2), 153–163.. https://doi.org/10.7848/ksgpc.2020.38.2.153
  • Bui, T. H. T., & Phi, T. T. (2023). Evaluation of global gravity field models by using GNSS/leveling data: A case study in Vietnam. The European Physical Journal Plus, 138(10), 953. https://doi.org/10.1140/epjp/s13360-023-04576-z
  • Kosarev, N. S., Kanushin, V. F., Kaftan, V. I., Ganagina, I. G., Goldobin, D. N., & Efimov, G. N. (2018). Determining Deflections of the Vertical in the Western Siberia Region: The Results of Comparison. Gyroscopy and Navigation, 9(2), 124–130. https://doi.org/10.1134/S2075108718020062
  • Albayrak, M., Hirt, C., Guillaume, S., Halicioglu, K., Özlüdemir, M. T., & Shum, C. K. (2020). Quality assessment of global gravity field models in coastal zones: A case study using astrogeodetic vertical deflections in Istanbul, Turkey. Studia Geophysica et Geodaetica, 64(3), 306–329. https://doi.org/10.1007/s11200-019-0591-2
  • De França, R. M., Klein, I., & Veiga, L. A. K. (2022). Quality of the deflection of the vertical obtained from global geopotential models in horizontal geodetic positioning. Applied Geomatics, 14(4), 795–810. https://doi.org/10.1007/s12518-022-00473-9
  • Karpik, A. P., Kanushin, V. F., Ganagina, I. G., Goldobin, D. N., Kosarev, N. S., & Kosareva, A. M. (2016). Evaluation of recent Earth’s global gravity field models with terrestrial gravity data. Contributions to Geophysics and Geodesy, 46(1), 1–11. https://doi.org/10.1515/congeo-2016-0001
  • Apeh, O. I., Moka, E. C., & Uzodinma, V. N. (2018). Evaluation of Gravity Data Derived from Global Gravity Field Models Using Terrestrial Gravity Data in Enugu State, Nigeria. Journal of Geodetic Science, 8(1), 145–153. https://doi.org/10.1515/jogs-2018-0015
  • Akdoğan, Y. A., Yildiz, H., & Ahi, G. O. (2019). Evaluation of global gravity models from absolute gravity and vertical gravity gradient measurements in Turkey. Measurement Science and Technology, 30(11), 115009. https://doi.org/10.1088/1361-6501/ab2f1c
  • Akdoğan, Y. A., & al., et. (2022). Free-air vertical gravity gradient modelling and its validation. Bulletin of Geophysics and Oceanography, 63(2), 237–248. https://doi.org/10.4430/bgo00385
  • Mazurova, E., Kopeikin, S., & Karpik, A. (2017). Development of a terrestrial reference frame in the Russian Federation. Studia Geophysica et Geodaetica, 61(4), 616–638. https://doi.org/10.1007/s11200-015-1106-4
  • Samratov, U. D., Khvostov, V. V., & Filatov, V. N. (2016). Directions for modernizing state geodetic support of the Republic of Kazakhstan using satellite and telecommunication technologies. LLC «Prospekt Publishing» (in Russian).
  • Torge, W. (2001). Geodesy (3rd completely rev. and extended ed). W. de Gruyter.
  • Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer Vienna. https://doi.org/10.1007/978-3-211-33545-1
  • Timofeev, V. Yu., Ardyukov, D. G., Goldobin, D. N., Timofeev, A. V., Nosov, D. A., Sizikov, I. S., Kalish, E. N., & Stus, Yu. F. (2023). Deep Structure of the Altai Mountains and Modern Ggravity Field Models. Geodynamics & Tectonophysics, 14(1). https://doi.org/10.5800/GT-2023-14-1-0681
  • Bursa, M., Demianov, G., & Yurkina, M. (1998). On the determination of the Earth’s model~—The mean equipotential surface. Studia Geophysica et Geodaetica, 42, 467–471. https://doi.org/10.1023/A:1023392920611
  • Demianov, G. V., & Sermyagin, R. A. (2009). Models of the global Earth’s gravitational field and their role at the present stage of geodesy. Geodezia i Kartografia, 10, 8–12 (in Russian).
  • Gerasimov, A. P., & Stolyarov, I. A. (2016). About the correction to the Kronstadt height datum. 76–83. (in Russian).
  • Shoganbekova, D. A. (2015). Development of algorithms for calculating height anomalies and modeling the gravimetric geoid of the Republic of Kazakhstan [Ph.D Thesis]. Kazakh National Research Technical University (in Russian)
Year 2025, Volume: 10 Issue: 1, 14 - 21
https://doi.org/10.26833/ijeg.1485621

Abstract

Project Number

The research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. BR21882366)

References

  • Sichugova, L., & Fazilova, D. (2024). Study of the seismic activity of the Almalyk-Angren industrial zone based on lineament analysis. International Journal of Engineering and Geosciences, 9(1), 1-11. https://doi.org/10.26833/ijeg.1192118
  • Bezcioğlu, M., Ucar, T., & Yiğit, C. Ö. (2023). Investigation of the capability of multi-GNSS PPP-AR method in detecting permanent displacements. International Journal of Engineering and Geosciences, 8(3), 251-261. https://doi.org/10.26833/ijeg.1140959
  • Yurdakul, Ö., & Kalaycı, İ. (2022). The effect of GLONASS on position accuracy in CORS-TR measurements at different baseline distances. International Journal of Engineering and Geosciences, 7(3), 229-246. https://doi.org/10.26833/ijeg.975204
  • Karadeniz, B., Pehlivan, H. ., Altıntaş, A. F., & Usta, S. . (2024). Comparison of Network-RTK and PPP Technique in terms of Position Accuracy. Advanced Geomatics, 4(1), 31–36. Retrieved from https://publish.mersin.edu.tr/index.php/geomatics/article/view/1189
  • Müller, J., Dirkx, D., Kopeikin, S. M., Lion, G., Panet, I., Petit, G., & Visser, P. N. A. M. (2018). High Performance Clocks and Gravity Field Determination. Space Science Reviews, 214(1), 5. https://doi.org/10.1007/s11214-017-0431-z
  • Ince, E. S., Barthelmes, F., Reißland, S., Elger, K., Förste, C., Flechtner, F., & Schuh, H. (2019). ICGEM – 15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth System Science Data, 11(2), 647–674. https://doi.org/10.5194/essd-11-647-2019
  • Liang, W., Li, J., Xu, X., Zhang, S., & Zhao, Y. (2020). A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering, 6(8), 860–878. https://doi.org/10.1016/j.eng.2020.05.008
  • Zingerle, P., Pail, R., Gruber, T., & Oikonomidou, X. (2020). The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 66. https://doi.org/10.1007/s00190-020-01398-0
  • Liang, W., Xu, X., Li, J., & Zhu, G. (2018). The determination of an ultra-high gravity field model SGG-UGM-1 by combining EGM2008 gravity anomaly and GOCE observation data. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 47, 425–434. https://doi.org/10.11947/j.AGCS.2018.20170269
  • Xu, X., Zhao, Y., Reubelt, T., & Tenzer, R. (2017). A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models. Geodesy and Geodynamics, 8(4), 260–272. https://doi.org/10.1016/j.geog.2017.03.013
  • Gilardoni, M., Reguzzoni, M., & Sampietro, D. (2016). GECO: A global gravity model by locally combining GOCE data and EGM2008. Studia Geophysica et Geodaetica, 60(2), 228–247. https://doi.org/10.1007/s11200-015-1114-4
  • Förste, C., Bruinsma, Sean. L., Abrikosov, O., Lemoine, J.-M., Marty, J. C., Flechtner, F., Balmino, G., Barthelmes, F., & Biancale, R. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse (p. 55102156 Bytes, 3 Files). GFZ Data Services. https://doi.org/10.5880/ICGEM.2015.1
  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008916
  • Foroughi, I., Afrasteh, Y., Ramouz, S., & Safari, A. (2017). Local Evaluation of Earth Gravitational Models, Case Study: Iran. Geodesy and Cartography, 43(1), 1–13. https://doi.org/10.3846/20296991.2017.1299839
  • Dawod, G. M., Mohamed, H. F., & Al-Krargy, E. M. (2019). Accuracy assessment of the PGM17 global geopotential model: A case study of Egypt and Northeast Africa. Arabian Journal of Geosciences, 12(7), 246. https://doi.org/10.1007/s12517-019-4418-9
  • Yilmaz, M., Turgut, B., Gullu, M., & Yilmaz, I. (2016). Evaluation of Recent Global Geopotential Models by GNSS/Levelling Data: Intenal Aegean Region. International Journal of Engineering and Geosciences, 1(1), 15–19. https://doi.org/10.26833/ijeg.285221
  • Yilmaz M. (2019). The comparison of global gravity models with terrestrial gravity data over western Anatolia. Bulletin of Geophysics and Oceanography, 60(3), 475–488. https://doi.org/10.4430/bgta0277
  • Lee Jisun, & Hyoun, K. (n.d.). Precision evaluation of recent global geopotential models based on GNSS/leveling data on unified control points. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 38(2), 153–163.. https://doi.org/10.7848/ksgpc.2020.38.2.153
  • Bui, T. H. T., & Phi, T. T. (2023). Evaluation of global gravity field models by using GNSS/leveling data: A case study in Vietnam. The European Physical Journal Plus, 138(10), 953. https://doi.org/10.1140/epjp/s13360-023-04576-z
  • Kosarev, N. S., Kanushin, V. F., Kaftan, V. I., Ganagina, I. G., Goldobin, D. N., & Efimov, G. N. (2018). Determining Deflections of the Vertical in the Western Siberia Region: The Results of Comparison. Gyroscopy and Navigation, 9(2), 124–130. https://doi.org/10.1134/S2075108718020062
  • Albayrak, M., Hirt, C., Guillaume, S., Halicioglu, K., Özlüdemir, M. T., & Shum, C. K. (2020). Quality assessment of global gravity field models in coastal zones: A case study using astrogeodetic vertical deflections in Istanbul, Turkey. Studia Geophysica et Geodaetica, 64(3), 306–329. https://doi.org/10.1007/s11200-019-0591-2
  • De França, R. M., Klein, I., & Veiga, L. A. K. (2022). Quality of the deflection of the vertical obtained from global geopotential models in horizontal geodetic positioning. Applied Geomatics, 14(4), 795–810. https://doi.org/10.1007/s12518-022-00473-9
  • Karpik, A. P., Kanushin, V. F., Ganagina, I. G., Goldobin, D. N., Kosarev, N. S., & Kosareva, A. M. (2016). Evaluation of recent Earth’s global gravity field models with terrestrial gravity data. Contributions to Geophysics and Geodesy, 46(1), 1–11. https://doi.org/10.1515/congeo-2016-0001
  • Apeh, O. I., Moka, E. C., & Uzodinma, V. N. (2018). Evaluation of Gravity Data Derived from Global Gravity Field Models Using Terrestrial Gravity Data in Enugu State, Nigeria. Journal of Geodetic Science, 8(1), 145–153. https://doi.org/10.1515/jogs-2018-0015
  • Akdoğan, Y. A., Yildiz, H., & Ahi, G. O. (2019). Evaluation of global gravity models from absolute gravity and vertical gravity gradient measurements in Turkey. Measurement Science and Technology, 30(11), 115009. https://doi.org/10.1088/1361-6501/ab2f1c
  • Akdoğan, Y. A., & al., et. (2022). Free-air vertical gravity gradient modelling and its validation. Bulletin of Geophysics and Oceanography, 63(2), 237–248. https://doi.org/10.4430/bgo00385
  • Mazurova, E., Kopeikin, S., & Karpik, A. (2017). Development of a terrestrial reference frame in the Russian Federation. Studia Geophysica et Geodaetica, 61(4), 616–638. https://doi.org/10.1007/s11200-015-1106-4
  • Samratov, U. D., Khvostov, V. V., & Filatov, V. N. (2016). Directions for modernizing state geodetic support of the Republic of Kazakhstan using satellite and telecommunication technologies. LLC «Prospekt Publishing» (in Russian).
  • Torge, W. (2001). Geodesy (3rd completely rev. and extended ed). W. de Gruyter.
  • Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical Geodesy (2nd ed.). Springer Vienna. https://doi.org/10.1007/978-3-211-33545-1
  • Timofeev, V. Yu., Ardyukov, D. G., Goldobin, D. N., Timofeev, A. V., Nosov, D. A., Sizikov, I. S., Kalish, E. N., & Stus, Yu. F. (2023). Deep Structure of the Altai Mountains and Modern Ggravity Field Models. Geodynamics & Tectonophysics, 14(1). https://doi.org/10.5800/GT-2023-14-1-0681
  • Bursa, M., Demianov, G., & Yurkina, M. (1998). On the determination of the Earth’s model~—The mean equipotential surface. Studia Geophysica et Geodaetica, 42, 467–471. https://doi.org/10.1023/A:1023392920611
  • Demianov, G. V., & Sermyagin, R. A. (2009). Models of the global Earth’s gravitational field and their role at the present stage of geodesy. Geodezia i Kartografia, 10, 8–12 (in Russian).
  • Gerasimov, A. P., & Stolyarov, I. A. (2016). About the correction to the Kronstadt height datum. 76–83. (in Russian).
  • Shoganbekova, D. A. (2015). Development of algorithms for calculating height anomalies and modeling the gravimetric geoid of the Republic of Kazakhstan [Ph.D Thesis]. Kazakh National Research Technical University (in Russian)
There are 35 citations in total.

Details

Primary Language English
Subjects Geomatic Engineering (Other)
Journal Section Research Article
Authors

Nikolai Kosarev 0000-0003-1806-3651

Denis Goldobin 0000-0002-2678-7636

Roman Sermiagin 0000-0002-2938-0444

Nurgan Kemerbaev 0009-0002-9868-8087

Andrei Sholomitskii 0000-0003-1906-7128

Project Number The research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. BR21882366)
Publication Date
Submission Date May 17, 2024
Acceptance Date September 17, 2024
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Kosarev, N., Goldobin, D., Sermiagin, R., Kemerbaev, N., et al. (n.d.). Evaluation of the high-degree global gravity field models in the territory of Kazakhstan. International Journal of Engineering and Geosciences, 10(1), 14-21. https://doi.org/10.26833/ijeg.1485621
AMA Kosarev N, Goldobin D, Sermiagin R, Kemerbaev N, Sholomitskii A. Evaluation of the high-degree global gravity field models in the territory of Kazakhstan. IJEG. 10(1):14-21. doi:10.26833/ijeg.1485621
Chicago Kosarev, Nikolai, Denis Goldobin, Roman Sermiagin, Nurgan Kemerbaev, and Andrei Sholomitskii. “Evaluation of the High-Degree Global Gravity Field Models in the Territory of Kazakhstan”. International Journal of Engineering and Geosciences 10, no. 1 n.d.: 14-21. https://doi.org/10.26833/ijeg.1485621.
EndNote Kosarev N, Goldobin D, Sermiagin R, Kemerbaev N, Sholomitskii A Evaluation of the high-degree global gravity field models in the territory of Kazakhstan. International Journal of Engineering and Geosciences 10 1 14–21.
IEEE N. Kosarev, D. Goldobin, R. Sermiagin, N. Kemerbaev, and A. Sholomitskii, “Evaluation of the high-degree global gravity field models in the territory of Kazakhstan”, IJEG, vol. 10, no. 1, pp. 14–21, doi: 10.26833/ijeg.1485621.
ISNAD Kosarev, Nikolai et al. “Evaluation of the High-Degree Global Gravity Field Models in the Territory of Kazakhstan”. International Journal of Engineering and Geosciences 10/1 (n.d.), 14-21. https://doi.org/10.26833/ijeg.1485621.
JAMA Kosarev N, Goldobin D, Sermiagin R, Kemerbaev N, Sholomitskii A. Evaluation of the high-degree global gravity field models in the territory of Kazakhstan. IJEG.;10:14–21.
MLA Kosarev, Nikolai et al. “Evaluation of the High-Degree Global Gravity Field Models in the Territory of Kazakhstan”. International Journal of Engineering and Geosciences, vol. 10, no. 1, pp. 14-21, doi:10.26833/ijeg.1485621.
Vancouver Kosarev N, Goldobin D, Sermiagin R, Kemerbaev N, Sholomitskii A. Evaluation of the high-degree global gravity field models in the territory of Kazakhstan. IJEG. 10(1):14-21.