Research Article
BibTex RIS Cite

Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study

Year 2025, Volume: 10 Issue: 1, 74 - 83
https://doi.org/10.26833/ijeg.1519533

Abstract

The rapid development of sensor technologies has led to smaller sensor sizes and lower costs. Today, the easy-of-use purchasing of sensors such as cameras, Light Detection and Ranging (LiDAR), Radio Detection and Ranging (RADAR), Inertial Measurement Units (IMUs), and Global Navigation Satellite System (GNSS) receivers have led to significant developments in many applications such as robotics and unmanned vehicles. Sensor data is transformed into information or products thanks to the methods. Simultaneous Localization and Mapping (SLAM) is one of the critical methods in which the vehicle's location is determined, and the environment is modelled. This method can realize applications using detection sensors such as cameras, LiDAR, or RADAR. This study aimed to model an indoor area with a two-dimensional (2D) LiDAR sensor placed on an Unmanned Ground Vehicle (UGV) and to analyse the accuracy of the produced model. Normal Distribution Transform (NDT) - Particle Swarm Optimization (PSO) algorithm was used to generate the 2D model from the collected LiDAR data. The NDT-PSO algorithm was executed on the Robot Operating System (ROS) installed on the Jetson Nano Developer Kit, and a real-time 2D model of the working area was processed. The reference lengths of the 75 facades in the 232 m2 indoor space were measured using a total station and calculated with CAD software. Percent error values were evaluated by comparing the reference and model lengths of the facades

Ethical Statement

The authors declare no conflicts of interest.

Supporting Institution

Ondokuz Mayıs University Scientific Research Projects

Project Number

PYO.MUH.1906.22.002

Thanks

This study was funded by Ondokuz Mayıs University Scientific Research Projects (Project No: PYO.MUH.1906.22.002). We appreciate the LOCUS-TEAM members for their support during this study.

References

  • Han, S., & Xi, Z. (2020). Dynamic Scene Semantics SLAM Based on Semantic Segmentation. IEEE Access, 8, 43563–43570. https://doi.org/10.1109/ACCESS.2020.2977684
  • Tee, Y. K., & Han, Y. C. (2021). Lidar-Based 2D SLAM for Mobile Robot in an Indoor Environment: A Review. In 2021 International Conference on Green Energy, Computing and Sustainable Technology, (GECOST) (pp. 1–7). Miri: IEEE. https://doi.org/10.1109/GECOST52368.2021.9538731
  • Han, X., Li, S., Wang, X., & Zhou, W. (2021). Semantic Mapping for Mobile Robots in Indoor Scenes: A Survey. Information, 12(2), 1–14. https://doi.org/10.3390/info12020092
  • Özbayrak, S., & İlçi, V. (2024). Visual-SLAM based 3-dimensional modelling of indoor environments. International Journal of Engineering and Geosciences, 9(3), 368–376. https://doi.org/10.26833/ijeg.1459216
  • Ghorpade, D., Thakare, A. D., & Doiphode, S. (2017). Obstacle Detection and Avoidance Algorithm for Autonomous Mobile Robot using 2D LiDAR. In 2017 Third International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1–6). Pune, India: IEEE. https://doi.org/10.1109/ICCUBEA.2017.8463846
  • Gomes, D., Alvarez, M., Brancalião, L., Carneiro, J., Gonçalves, G., Costa, P., … Pinto, V. H. (2022). Data Analysis for Trajectory Generation for a Robot Manipulator Using Data from a 2D Industrial Laser. Machines, 10(10), 907. https://doi.org/10.3390/machines10100907
  • Shang, Y., Wang, H., Qin, W., Wang, Q., Liu, H., Yin, Y., … Meng, Z. (2023). Design and Test of Obstacle Detection and Harvester Pre-Collision System Based on 2D Lidar. Agronomy, 13(2), 388. https://doi.org/10.3390/agronomy13020388
  • Afrisal, H., Nugraha, G. K., Nanda, A. A., Setiyadi, A. D., Toirov, O., Ismail, R., … Setiawan, I. (2022). Mobile Robotic-Arm Development for A Small-Scale Inter-Room Logistic Delivery using 2D LIDAR-guided Navigation. Teknik, 43(2), 158–167. https://doi.org/10.14710/teknik.v43i2.45642
  • Sui, L., & Lin, L. (2020). Design of Household Cleaning Robot Based on Low-cost 2D LIDAR SLAM. In 2020 International Symposium on Autonomous Systems, (ISAS) (pp. 223–227). IEEE. https://doi.org/10.1109/ISAS49493.2020.9378863
  • Kaderli, L. (2021). Documentation Methods from Tradition to the Present: Case Study Cappadocia. Advanced LiDAR, 1(1), 18–26.
  • Niloy, M. A. K., Shama, A., Chakrabortty, R. K., Ryan, M. J., Badal, F. R., Tasneem, Z., … Saha, D. K. (2021). Critical Design and Control Issues of Indoor Autonomous Mobile Robots: A Review. IEEE Access, 9, 35338–35370. https://doi.org/10.1109/ACCESS.2021.3062557
  • Koca, B., & Ceylan, A. (2018). Uydu Konum Belirleme Sistemlerindeki (GNSS) Güncel Durum ve Son Gelişmeler. Geomatik Dergisi, 3(1), 63–73.
  • İlçi, V., & Peker, A. U. (2022). The Kinematic Performance of Real-Time PPP Services in Challenging Environment. Measurement, 189, 110434. https://doi.org/10.1016/j.measurement.2021.110434
  • Li, Y., & Ibanez-Guzman, J. (2020). Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems. IEEE Signal Processing Magazine, 37(4), 50–61. https://doi.org/10.1109/MSP.2020.2973615
  • İlçi, V., Gülal, E., & Alkan, R. M. (2018). An Investigation of Different Wi-Fi Signal Behaviours and Their Effects on Indoor Positioning Accuracy. Survey Review, 50(362), 404–411. https://doi.org/10.1080/00396265.2017.1292672
  • İlçi, V., Gülal, E., & Alkan, R. M. (2020). Performance Comparison of 2.4 and 5 GHz WiFi Signals and Proposing a New Method for Mobile Indoor Positioning. Wireless Personal Communications, 110, 1493–1511. https://doi.org/10.1007/s11277-019-06797-x
  • Onyekpe, U., Palade, V., & Kanarachos, S. (2021). Learning to Localise Automated Vehicles in Challenging Environments Using Inertial Navigation Systems (INS). Applied Sciences, 11(3), 1270. https://doi.org/10.3390/app11031270
  • Gürtürk, M., & İlçi, V. (2022). The Performance Evaluation of PPK and PPP-based Loosely Coupled Integration in Wooded and Urban Areas. Earth Sciences Research Journal, 26, 211–220. https://doi.org/10.15446/esrj.v26n3.100518
  • Jiang, W., Li, Y., Rizos, C., Cai, B., & Shangguan, W. (2017). Seamless Indoor-Outdoor Navigation based on GNSS, INS and Terrestrial Ranging Techniques. Journal of Navigation, 70, 1183–1204. https://doi.org/10.1017/S037346331700042X
  • Dai, Y., Wu, J., Wang, D., & Watanabe, K. (2023). A Review of Common Techniques for Visual Simultaneous Localization and Mapping. Journal of Robotics, 2023, 1–21. https://doi.org/10.1155/2023/8872822
  • Chen, Y., Zhou, Y., Lv, Q., & Deveerasetty, K. K. (2018). A Review of V-SLAM. In International Conference on Information and Automation (pp. 603–608). Wuyi Mountain, China: IEEE.
  • Huang, L. (2021). Review on LiDAR-based SLAM Techniques. In 2021 International Conference on Signal Processing and Machine Learning, (CONF-SPML) (pp. 163–168). Stanford, CA, USA: IEEE. https://doi.org/10.1109/CONF-SPML54095.2021.00040
  • Sarıtaş, B., & Kaplan, G. (2024). A Comprehensive Study on Enhanced Accuracy Analysis of LIDAR Data: The Example of Skopje. Advanced LiDAR, 4(1), 9–18.
  • Sevgen, S. C. (2019). Airborne LiDAR Data Classification in Complex Urban Area Using Random Forest: A Case Study of Bergama, Turkey. International Journal of Engineering and Geosciences, 4(1), 45–51. https://doi.org/10.26833/ijeg.440828
  • Demirel, Y., & Türk, T. (2024, December 31). Assessment of the location accuracy of points obtained with a low-cost Lidar scanning system and GNSS method. Mersin Photogrammetry Journal. Mersin University. https://doi.org/10.53093/mephoj.1540159
  • He, F., & Zhang, L. (2023). Design of Indoor Security Robot based on Robot Operating System. Journal of Computer and Communications, 11(5), 93–107. https://doi.org/10.4236/jcc.2023.115008
  • Olalekan, A. F., Sagor, J. A., Hasan, M. H., & Oluwatobi, A. S. (2021). Comparison of Two SLAM Algorithms Provided by ROS (Robot Operating System). In 2021 2nd International Conference for Emerging Technology (INCET) (pp. 1–5). Belagavi, India: IEEE. https://doi.org/10.1109/INCET51464.2021.9456164
  • Nagla, S. (2020). 2D Hector SLAM of Indoor Mobile Robot using 2D Lidar. In 2020 2nd International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1–4). Chennai, India: IEEE. https://doi.org/10.1109/ICPECTS49113.2020.9336995
  • Roriz, R., Cabral, J., & Gomes, T. (2022). Automotive LiDAR Technology: A Survey. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6282–6297. https://doi.org/10.1109/TITS.2021.3086804
  • Protopopov, V. V. (2009). Laser Heterodyne Radars and Lidars (Vol. 149). Berlin, Heidelberg: Springer Series in Optical Sciences.
  • Gao, B., Hu, G., Zhong, Y., & Zhu, X. (2021). Cubature Kalman Filter with Both Adaptability and Robustness for Tightly-Coupled GNSS/INS Integration. IEEE Sensors Journal, 21(13), 14997–15011. https://doi.org/10.1109/JSEN.2021.3073963
  • Bitenc, M., Lindenbergh, R., Khoshelham, K., & van Waarden, A. P. (2011). Evaluation of a LIDAR Land-Based Mobile Mapping System for Monitoring Sandy Coasts. Remote Sensing, 3(7), 1472–1491. https://doi.org/10.3390/rs3071472
  • Uthe, E. E. (1983). Application of Surface Based and Airborne Lidar Systems for Environmental Monitoring. Journal of the Air Pollution Control Association, 33(12), 1149–1155. https://doi.org/10.1080/00022470.1983.10465705
  • Mehendale, N. , & Neoge, S. ,. (2020). Review on LiDAR technology. SSRN, 1–9. https://doi.org/http://dx.doi.org/10.2139/ssrn.3604309
  • Ozdemir, S., Akbulut, Z., Karsli, F., & Acar, H. (2021). Automatic extraction of trees by using multiple return properties of the lidar point cloud. International Journal of Engineering and Geosciences, 6(1), 20–26. https://doi.org/10.26833/ijeg.668352
  • Peng, Y. , Qu, D. , Zhong, Y. , Xie, S. , Luo, J. , & Gu, J. (2015). The Obstacle Detection and Obstacle Avoidance Algorithm Based on 2-D Lidar. In 2015 IEEE International Conference on Information and Automation (pp. 1648–1653). Lijiang, China: IEEE.
  • Promneewat, K., & Taksavasu, T. (2024). Performance of Affordable 2D Cave Scanning Technique from LiDAR for Constructing 3D Cave Models. Advanced LiDAR, 4(1), 1–8.
  • Meng, J., Wan, L., Wang, S., Jiang, L., Li, G., Wu, L., & Xie, Y. (2021). Efficient and Reliable LiDAR-Based Global Localization of Mobile Robots Using Multiscale/Resolution Maps. IEEE Transactions on Instrumentation and Measurement, 70, 1–15. https://doi.org/10.1109/TIM.2021.3093933
  • Queralta, J. P., Yuhong, F., Salomaa, L., Qingqing, L., Gia, T. N., Zou, Z., & Westerlund, T. (2019). FPGA-based Architecture for a Low-Cost 3D Lidar Design and Implementation from Multiple Rotating 2D Lidars with ROS. In 2019 IEEE Sensors (pp. 1–4). Montreal, QC: IEEE. https://doi.org/10.1109/SENSORS43011.2019.8956928
  • Nguyen, X. T., Kim, H., & Lee, H. J. (2020). A Gradient-Aware Line Sampling Algorithm for LiDAR Scanners. IEEE Sensors Journal, 20(16), 9283–9292. https://doi.org/10.1109/JSEN.2020.2986819
  • Raj, T., Hashim, F. H., Huddin, A. B., Ibrahim, M. F., & Hussain, A. (2020). A survey on LiDAR scanning Mechanisms. Electronics, 9(5), 741. https://doi.org/10.3390/electronics9050741
  • Behroozpour, B., Sandborn, P. A. M., Wu, M. C., & Boser, B. E. (2017). Lidar System Architectures and Circuits. IEEE Communications Magazine, 55(10), 135–142. https://doi.org/10.1109/MCOM.2017.1700030
  • Hassan, T., Fath-Allah, T., Elhabiby, M., Awad, A., & El-Tokhey, M. (2022). Detection of GNSS no-line of Sight Signals Using LiDAR Sensors for Intelligent Transportation Systems. Survey Review, 54(385), 301–309. https://doi.org/10.1080/00396265.2021.1937458
  • Günen, M. A., Erkan, İ., Aliyazıcıoğlu, Ş., & Kumaş, C. (2023). Investigation of geometric object and indoor mapping capacity of Apple iPhone 12 Pro LiDAR. Mersin Photogrammetry Journal, 5(2), 82–89. https://doi.org/10.53093/mephoj.1354998
  • Dai, Z., Wolf, A., Ley, P. P., Glück, T., Sundermeier, M. C., & Lachmayer, R. (2022). Requirements for Automotive LiDAR Systems. Sensors, 22(19), 7532. https://doi.org/10.3390/s22197532
  • Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, & D. Rus. (2013). Mapping with Synthetic 2D LIDAR in 3D Urban Environment. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Syste (IROS) (pp. 4715–4720). Tokyo: IEEE.
  • Gul, F., Rahiman, W., & Nazli Alhady, S. S. (2019). A Comprehensive Study for Robot Navigation Techniques. Cogent Engineering, 6(1). https://doi.org/10.1080/23311916.2019.1632046
  • Habib, M. K. (2007). Real Time Mapping and Dynamic Navigation for Mobile Robots. International Journal of Advanced Robotic Systems, 4(3), 323–338.
  • Khan, M. U., Zaidi, S. A. A., Ishtiaq, A., Bukhari, S. U. R., Samer, S., & Farman, A. (2021). A Comparative Survey of LiDAR-SLAM and LiDAR based Sensor Technologies. In 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC) (pp. 1–8). Karachi, Pakistan: IEEE. https://doi.org/10.1109/MAJICC53071.2021.9526266
  • Rivai, M., Hutabarat, D., & Jauhar Nafis, Z. M. (2020). 2D mapping using omni-directional mobile robot equipped with LiDAR. Telkomnika (Telecommunication Computing Electronics and Control), 18(3), 1467–1474. https://doi.org/10.12928/TELKOMNIKA.v18i3.14872
  • Zheng, T., Duan, Z., Wang, J., Lu, G., Li, S., & Yu, Z. (2021). Research on Distance Transform and Neural Network Lidar Information Sampling Classification-Based Semantic Segmentation of 2D Indoor Room Maps. Sensors, 21(4), 1–20. https://doi.org/10.3390/s21041365
  • Petrlik, M., Krajnik, T., & Saska, M. (2021). LIDAR-based Stabilization, Navigation and Localization for UAVs Operating in Dark Indoor Environments. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 243–251). Athens, Greece: ICUAS. https://doi.org/10.1109/ICUAS51884.2021.9476837
  • Bae, S. H., Joo, S. H., Choi, J. H., Park, H. J., & Kuc, T. Y. (2022). Localization System Through 2D LiDAR based Semantic Feature For Indoor Robot. In 2022 19th International Conference on Ubiquitous Robots (UR) (pp. 338–342). Jeju, Korea: IEEE. https://doi.org/10.1109/UR55393.2022.9826250
  • P, T. S. , P, S. , Muppidi, A. J. , & Pagala, P. S. (2020). Analysis of Computational Need of 2D-SLAM Algorithms for Unmanned Ground Vehicle. In Proceedings of the International Conference on Intelligent Computing and Control Systems (pp. 230–235). Madurai: IEEE.
  • Eliwa, M., Adham, A., Sami, I., & Eldeeb, M. (2017). A critical comparison Between Fast and Hector SLAM Algorithms. REST Journal on Emerging trends in Modelling and Manufacturing, 3(2), 44–49.
  • Trejos, K., Rincón, L., Bolaños, M., Fallas, J., & Marín, L. (2022). 2D SLAM Algorithms Characterization, Calibration, and Comparison Considering Pose Error, Map Accuracy as Well as CPU and Memory Usage. Sensors, 22(18), 6903. https://doi.org/10.3390/s22186903
  • Das, A., & Waslander, S. L. (2014). Scan Registration Using Segmented Region Growing NDT. International Journal of Robotics Research, 33(13), 1645–1663. https://doi.org/10.1177/0278364914539404
  • Prados Sesmero, C., Villanueva Lorente, S., & Di Castro, M. (2021). Graph SLAM Built Over Point Clouds Matching for Robot Localization in Tunnels. Sensors, 21(16), 5340. https://doi.org/10.3390/s21165340
  • Jang, K. W., Jeong, W. J., & Kang, Y. (2022). Development of a GPU-Accelerated NDT Localization Algorithm for GNSS-Denied Urban Areas. Sensors, 22(5), 1913. https://doi.org/10.3390/s22051913
  • Lee, J., Lee, K., Yoo, A., & Moon, C. (2020). Design and Implementation of Edge-Fog-Cloud System Through HD Map Generation from Lidar Data of Autonomous Vehicles. Electronics, 9(12), 1–15. https://doi.org/10.3390/electronics9122084
  • Kan, Y. C., Hsu, L. T., & Chung, E. (2021). Performance Evaluation on Map-Based NDT Scan Matching Localization Using Simulated Occlusion Datasets. IEEE Sensors Letters, 5(3), 1–4. https://doi.org/10.1109/LSENS.2021.3060097
  • Huang, H.-C., Xu, S. S.-D., Lin, H.-C., Xiao, Y.-S., & Chen, Y.-X. (2023). Design and Implementation of Intelligent LiDAR SLAM for Autonomous Mobile Robots Using Evolutionary Normal Distributions Transform. Soft Computing, 5321–5337. https://doi.org/10.1007/s00500-023-09219-0
  • Chen, S., Ma, H., Jiang, C., Zhou, B., Xue, W., Xiao, Z., & Li, Q. (2022). NDT-LOAM: A Real-Time Lidar Odometry and Mapping With Weighted NDT and LFA. IEEE Sensors Journal, 22(4), 3660–3671. https://doi.org/10.1109/JSEN.2021.3135055
  • Bouraine, S. , Bougouffa, A. , & Azouaoui, O. (2020). NDT-PSO, a New NDT based SLAM Approach using Particle Swarm Optimization. In 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV) (pp. 321–326). Shenzhen, China: IEEE. https://doi.org/doi: 10.1109/ICARCV50220.2020.9305519.
  • Feng, H. M. (2006). Self-Generation RBFNs using Evolutional PSO Learning. Neurocomputing, 70(1–3), 241–251. https://doi.org/10.1016/j.neucom.2006.03.007
  • Jain, M., Saihjpal, V., Singh, N., & Singh, S. B. (2022). An Overview of Variants and Advancements of PSO Algorithm. Applied Sciences, 12(17), 8392. https://doi.org/10.3390/app12178392
  • Yakar, M.; Yılmaz, H.M.; Mutluoǧlu, Ö. Comparative evaluation of excavation volume by TLS and total topographic station based methods. Lasers Eng. 2010, 19, 331–345.
  • Yakar, M., Yilmaz, H. M., & Mutluoglu, O. (2014). Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavtion and filling areas. Arabian Journal for Science and Engineering, 39, 387-394.
Year 2025, Volume: 10 Issue: 1, 74 - 83
https://doi.org/10.26833/ijeg.1519533

Abstract

Project Number

PYO.MUH.1906.22.002

References

  • Han, S., & Xi, Z. (2020). Dynamic Scene Semantics SLAM Based on Semantic Segmentation. IEEE Access, 8, 43563–43570. https://doi.org/10.1109/ACCESS.2020.2977684
  • Tee, Y. K., & Han, Y. C. (2021). Lidar-Based 2D SLAM for Mobile Robot in an Indoor Environment: A Review. In 2021 International Conference on Green Energy, Computing and Sustainable Technology, (GECOST) (pp. 1–7). Miri: IEEE. https://doi.org/10.1109/GECOST52368.2021.9538731
  • Han, X., Li, S., Wang, X., & Zhou, W. (2021). Semantic Mapping for Mobile Robots in Indoor Scenes: A Survey. Information, 12(2), 1–14. https://doi.org/10.3390/info12020092
  • Özbayrak, S., & İlçi, V. (2024). Visual-SLAM based 3-dimensional modelling of indoor environments. International Journal of Engineering and Geosciences, 9(3), 368–376. https://doi.org/10.26833/ijeg.1459216
  • Ghorpade, D., Thakare, A. D., & Doiphode, S. (2017). Obstacle Detection and Avoidance Algorithm for Autonomous Mobile Robot using 2D LiDAR. In 2017 Third International Conference on Computing, Communication, Control and Automation (ICCUBEA) (pp. 1–6). Pune, India: IEEE. https://doi.org/10.1109/ICCUBEA.2017.8463846
  • Gomes, D., Alvarez, M., Brancalião, L., Carneiro, J., Gonçalves, G., Costa, P., … Pinto, V. H. (2022). Data Analysis for Trajectory Generation for a Robot Manipulator Using Data from a 2D Industrial Laser. Machines, 10(10), 907. https://doi.org/10.3390/machines10100907
  • Shang, Y., Wang, H., Qin, W., Wang, Q., Liu, H., Yin, Y., … Meng, Z. (2023). Design and Test of Obstacle Detection and Harvester Pre-Collision System Based on 2D Lidar. Agronomy, 13(2), 388. https://doi.org/10.3390/agronomy13020388
  • Afrisal, H., Nugraha, G. K., Nanda, A. A., Setiyadi, A. D., Toirov, O., Ismail, R., … Setiawan, I. (2022). Mobile Robotic-Arm Development for A Small-Scale Inter-Room Logistic Delivery using 2D LIDAR-guided Navigation. Teknik, 43(2), 158–167. https://doi.org/10.14710/teknik.v43i2.45642
  • Sui, L., & Lin, L. (2020). Design of Household Cleaning Robot Based on Low-cost 2D LIDAR SLAM. In 2020 International Symposium on Autonomous Systems, (ISAS) (pp. 223–227). IEEE. https://doi.org/10.1109/ISAS49493.2020.9378863
  • Kaderli, L. (2021). Documentation Methods from Tradition to the Present: Case Study Cappadocia. Advanced LiDAR, 1(1), 18–26.
  • Niloy, M. A. K., Shama, A., Chakrabortty, R. K., Ryan, M. J., Badal, F. R., Tasneem, Z., … Saha, D. K. (2021). Critical Design and Control Issues of Indoor Autonomous Mobile Robots: A Review. IEEE Access, 9, 35338–35370. https://doi.org/10.1109/ACCESS.2021.3062557
  • Koca, B., & Ceylan, A. (2018). Uydu Konum Belirleme Sistemlerindeki (GNSS) Güncel Durum ve Son Gelişmeler. Geomatik Dergisi, 3(1), 63–73.
  • İlçi, V., & Peker, A. U. (2022). The Kinematic Performance of Real-Time PPP Services in Challenging Environment. Measurement, 189, 110434. https://doi.org/10.1016/j.measurement.2021.110434
  • Li, Y., & Ibanez-Guzman, J. (2020). Lidar for Autonomous Driving: The Principles, Challenges, and Trends for Automotive Lidar and Perception Systems. IEEE Signal Processing Magazine, 37(4), 50–61. https://doi.org/10.1109/MSP.2020.2973615
  • İlçi, V., Gülal, E., & Alkan, R. M. (2018). An Investigation of Different Wi-Fi Signal Behaviours and Their Effects on Indoor Positioning Accuracy. Survey Review, 50(362), 404–411. https://doi.org/10.1080/00396265.2017.1292672
  • İlçi, V., Gülal, E., & Alkan, R. M. (2020). Performance Comparison of 2.4 and 5 GHz WiFi Signals and Proposing a New Method for Mobile Indoor Positioning. Wireless Personal Communications, 110, 1493–1511. https://doi.org/10.1007/s11277-019-06797-x
  • Onyekpe, U., Palade, V., & Kanarachos, S. (2021). Learning to Localise Automated Vehicles in Challenging Environments Using Inertial Navigation Systems (INS). Applied Sciences, 11(3), 1270. https://doi.org/10.3390/app11031270
  • Gürtürk, M., & İlçi, V. (2022). The Performance Evaluation of PPK and PPP-based Loosely Coupled Integration in Wooded and Urban Areas. Earth Sciences Research Journal, 26, 211–220. https://doi.org/10.15446/esrj.v26n3.100518
  • Jiang, W., Li, Y., Rizos, C., Cai, B., & Shangguan, W. (2017). Seamless Indoor-Outdoor Navigation based on GNSS, INS and Terrestrial Ranging Techniques. Journal of Navigation, 70, 1183–1204. https://doi.org/10.1017/S037346331700042X
  • Dai, Y., Wu, J., Wang, D., & Watanabe, K. (2023). A Review of Common Techniques for Visual Simultaneous Localization and Mapping. Journal of Robotics, 2023, 1–21. https://doi.org/10.1155/2023/8872822
  • Chen, Y., Zhou, Y., Lv, Q., & Deveerasetty, K. K. (2018). A Review of V-SLAM. In International Conference on Information and Automation (pp. 603–608). Wuyi Mountain, China: IEEE.
  • Huang, L. (2021). Review on LiDAR-based SLAM Techniques. In 2021 International Conference on Signal Processing and Machine Learning, (CONF-SPML) (pp. 163–168). Stanford, CA, USA: IEEE. https://doi.org/10.1109/CONF-SPML54095.2021.00040
  • Sarıtaş, B., & Kaplan, G. (2024). A Comprehensive Study on Enhanced Accuracy Analysis of LIDAR Data: The Example of Skopje. Advanced LiDAR, 4(1), 9–18.
  • Sevgen, S. C. (2019). Airborne LiDAR Data Classification in Complex Urban Area Using Random Forest: A Case Study of Bergama, Turkey. International Journal of Engineering and Geosciences, 4(1), 45–51. https://doi.org/10.26833/ijeg.440828
  • Demirel, Y., & Türk, T. (2024, December 31). Assessment of the location accuracy of points obtained with a low-cost Lidar scanning system and GNSS method. Mersin Photogrammetry Journal. Mersin University. https://doi.org/10.53093/mephoj.1540159
  • He, F., & Zhang, L. (2023). Design of Indoor Security Robot based on Robot Operating System. Journal of Computer and Communications, 11(5), 93–107. https://doi.org/10.4236/jcc.2023.115008
  • Olalekan, A. F., Sagor, J. A., Hasan, M. H., & Oluwatobi, A. S. (2021). Comparison of Two SLAM Algorithms Provided by ROS (Robot Operating System). In 2021 2nd International Conference for Emerging Technology (INCET) (pp. 1–5). Belagavi, India: IEEE. https://doi.org/10.1109/INCET51464.2021.9456164
  • Nagla, S. (2020). 2D Hector SLAM of Indoor Mobile Robot using 2D Lidar. In 2020 2nd International Conference on Power, Energy, Control and Transmission Systems (ICPECTS) (pp. 1–4). Chennai, India: IEEE. https://doi.org/10.1109/ICPECTS49113.2020.9336995
  • Roriz, R., Cabral, J., & Gomes, T. (2022). Automotive LiDAR Technology: A Survey. IEEE Transactions on Intelligent Transportation Systems, 23(7), 6282–6297. https://doi.org/10.1109/TITS.2021.3086804
  • Protopopov, V. V. (2009). Laser Heterodyne Radars and Lidars (Vol. 149). Berlin, Heidelberg: Springer Series in Optical Sciences.
  • Gao, B., Hu, G., Zhong, Y., & Zhu, X. (2021). Cubature Kalman Filter with Both Adaptability and Robustness for Tightly-Coupled GNSS/INS Integration. IEEE Sensors Journal, 21(13), 14997–15011. https://doi.org/10.1109/JSEN.2021.3073963
  • Bitenc, M., Lindenbergh, R., Khoshelham, K., & van Waarden, A. P. (2011). Evaluation of a LIDAR Land-Based Mobile Mapping System for Monitoring Sandy Coasts. Remote Sensing, 3(7), 1472–1491. https://doi.org/10.3390/rs3071472
  • Uthe, E. E. (1983). Application of Surface Based and Airborne Lidar Systems for Environmental Monitoring. Journal of the Air Pollution Control Association, 33(12), 1149–1155. https://doi.org/10.1080/00022470.1983.10465705
  • Mehendale, N. , & Neoge, S. ,. (2020). Review on LiDAR technology. SSRN, 1–9. https://doi.org/http://dx.doi.org/10.2139/ssrn.3604309
  • Ozdemir, S., Akbulut, Z., Karsli, F., & Acar, H. (2021). Automatic extraction of trees by using multiple return properties of the lidar point cloud. International Journal of Engineering and Geosciences, 6(1), 20–26. https://doi.org/10.26833/ijeg.668352
  • Peng, Y. , Qu, D. , Zhong, Y. , Xie, S. , Luo, J. , & Gu, J. (2015). The Obstacle Detection and Obstacle Avoidance Algorithm Based on 2-D Lidar. In 2015 IEEE International Conference on Information and Automation (pp. 1648–1653). Lijiang, China: IEEE.
  • Promneewat, K., & Taksavasu, T. (2024). Performance of Affordable 2D Cave Scanning Technique from LiDAR for Constructing 3D Cave Models. Advanced LiDAR, 4(1), 1–8.
  • Meng, J., Wan, L., Wang, S., Jiang, L., Li, G., Wu, L., & Xie, Y. (2021). Efficient and Reliable LiDAR-Based Global Localization of Mobile Robots Using Multiscale/Resolution Maps. IEEE Transactions on Instrumentation and Measurement, 70, 1–15. https://doi.org/10.1109/TIM.2021.3093933
  • Queralta, J. P., Yuhong, F., Salomaa, L., Qingqing, L., Gia, T. N., Zou, Z., & Westerlund, T. (2019). FPGA-based Architecture for a Low-Cost 3D Lidar Design and Implementation from Multiple Rotating 2D Lidars with ROS. In 2019 IEEE Sensors (pp. 1–4). Montreal, QC: IEEE. https://doi.org/10.1109/SENSORS43011.2019.8956928
  • Nguyen, X. T., Kim, H., & Lee, H. J. (2020). A Gradient-Aware Line Sampling Algorithm for LiDAR Scanners. IEEE Sensors Journal, 20(16), 9283–9292. https://doi.org/10.1109/JSEN.2020.2986819
  • Raj, T., Hashim, F. H., Huddin, A. B., Ibrahim, M. F., & Hussain, A. (2020). A survey on LiDAR scanning Mechanisms. Electronics, 9(5), 741. https://doi.org/10.3390/electronics9050741
  • Behroozpour, B., Sandborn, P. A. M., Wu, M. C., & Boser, B. E. (2017). Lidar System Architectures and Circuits. IEEE Communications Magazine, 55(10), 135–142. https://doi.org/10.1109/MCOM.2017.1700030
  • Hassan, T., Fath-Allah, T., Elhabiby, M., Awad, A., & El-Tokhey, M. (2022). Detection of GNSS no-line of Sight Signals Using LiDAR Sensors for Intelligent Transportation Systems. Survey Review, 54(385), 301–309. https://doi.org/10.1080/00396265.2021.1937458
  • Günen, M. A., Erkan, İ., Aliyazıcıoğlu, Ş., & Kumaş, C. (2023). Investigation of geometric object and indoor mapping capacity of Apple iPhone 12 Pro LiDAR. Mersin Photogrammetry Journal, 5(2), 82–89. https://doi.org/10.53093/mephoj.1354998
  • Dai, Z., Wolf, A., Ley, P. P., Glück, T., Sundermeier, M. C., & Lachmayer, R. (2022). Requirements for Automotive LiDAR Systems. Sensors, 22(19), 7532. https://doi.org/10.3390/s22197532
  • Z. J. Chong, B. Qin, T. Bandyopadhyay, M. H. Ang, E. Frazzoli, & D. Rus. (2013). Mapping with Synthetic 2D LIDAR in 3D Urban Environment. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Syste (IROS) (pp. 4715–4720). Tokyo: IEEE.
  • Gul, F., Rahiman, W., & Nazli Alhady, S. S. (2019). A Comprehensive Study for Robot Navigation Techniques. Cogent Engineering, 6(1). https://doi.org/10.1080/23311916.2019.1632046
  • Habib, M. K. (2007). Real Time Mapping and Dynamic Navigation for Mobile Robots. International Journal of Advanced Robotic Systems, 4(3), 323–338.
  • Khan, M. U., Zaidi, S. A. A., Ishtiaq, A., Bukhari, S. U. R., Samer, S., & Farman, A. (2021). A Comparative Survey of LiDAR-SLAM and LiDAR based Sensor Technologies. In 2021 Mohammad Ali Jinnah University International Conference on Computing (MAJICC) (pp. 1–8). Karachi, Pakistan: IEEE. https://doi.org/10.1109/MAJICC53071.2021.9526266
  • Rivai, M., Hutabarat, D., & Jauhar Nafis, Z. M. (2020). 2D mapping using omni-directional mobile robot equipped with LiDAR. Telkomnika (Telecommunication Computing Electronics and Control), 18(3), 1467–1474. https://doi.org/10.12928/TELKOMNIKA.v18i3.14872
  • Zheng, T., Duan, Z., Wang, J., Lu, G., Li, S., & Yu, Z. (2021). Research on Distance Transform and Neural Network Lidar Information Sampling Classification-Based Semantic Segmentation of 2D Indoor Room Maps. Sensors, 21(4), 1–20. https://doi.org/10.3390/s21041365
  • Petrlik, M., Krajnik, T., & Saska, M. (2021). LIDAR-based Stabilization, Navigation and Localization for UAVs Operating in Dark Indoor Environments. In 2021 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 243–251). Athens, Greece: ICUAS. https://doi.org/10.1109/ICUAS51884.2021.9476837
  • Bae, S. H., Joo, S. H., Choi, J. H., Park, H. J., & Kuc, T. Y. (2022). Localization System Through 2D LiDAR based Semantic Feature For Indoor Robot. In 2022 19th International Conference on Ubiquitous Robots (UR) (pp. 338–342). Jeju, Korea: IEEE. https://doi.org/10.1109/UR55393.2022.9826250
  • P, T. S. , P, S. , Muppidi, A. J. , & Pagala, P. S. (2020). Analysis of Computational Need of 2D-SLAM Algorithms for Unmanned Ground Vehicle. In Proceedings of the International Conference on Intelligent Computing and Control Systems (pp. 230–235). Madurai: IEEE.
  • Eliwa, M., Adham, A., Sami, I., & Eldeeb, M. (2017). A critical comparison Between Fast and Hector SLAM Algorithms. REST Journal on Emerging trends in Modelling and Manufacturing, 3(2), 44–49.
  • Trejos, K., Rincón, L., Bolaños, M., Fallas, J., & Marín, L. (2022). 2D SLAM Algorithms Characterization, Calibration, and Comparison Considering Pose Error, Map Accuracy as Well as CPU and Memory Usage. Sensors, 22(18), 6903. https://doi.org/10.3390/s22186903
  • Das, A., & Waslander, S. L. (2014). Scan Registration Using Segmented Region Growing NDT. International Journal of Robotics Research, 33(13), 1645–1663. https://doi.org/10.1177/0278364914539404
  • Prados Sesmero, C., Villanueva Lorente, S., & Di Castro, M. (2021). Graph SLAM Built Over Point Clouds Matching for Robot Localization in Tunnels. Sensors, 21(16), 5340. https://doi.org/10.3390/s21165340
  • Jang, K. W., Jeong, W. J., & Kang, Y. (2022). Development of a GPU-Accelerated NDT Localization Algorithm for GNSS-Denied Urban Areas. Sensors, 22(5), 1913. https://doi.org/10.3390/s22051913
  • Lee, J., Lee, K., Yoo, A., & Moon, C. (2020). Design and Implementation of Edge-Fog-Cloud System Through HD Map Generation from Lidar Data of Autonomous Vehicles. Electronics, 9(12), 1–15. https://doi.org/10.3390/electronics9122084
  • Kan, Y. C., Hsu, L. T., & Chung, E. (2021). Performance Evaluation on Map-Based NDT Scan Matching Localization Using Simulated Occlusion Datasets. IEEE Sensors Letters, 5(3), 1–4. https://doi.org/10.1109/LSENS.2021.3060097
  • Huang, H.-C., Xu, S. S.-D., Lin, H.-C., Xiao, Y.-S., & Chen, Y.-X. (2023). Design and Implementation of Intelligent LiDAR SLAM for Autonomous Mobile Robots Using Evolutionary Normal Distributions Transform. Soft Computing, 5321–5337. https://doi.org/10.1007/s00500-023-09219-0
  • Chen, S., Ma, H., Jiang, C., Zhou, B., Xue, W., Xiao, Z., & Li, Q. (2022). NDT-LOAM: A Real-Time Lidar Odometry and Mapping With Weighted NDT and LFA. IEEE Sensors Journal, 22(4), 3660–3671. https://doi.org/10.1109/JSEN.2021.3135055
  • Bouraine, S. , Bougouffa, A. , & Azouaoui, O. (2020). NDT-PSO, a New NDT based SLAM Approach using Particle Swarm Optimization. In 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV) (pp. 321–326). Shenzhen, China: IEEE. https://doi.org/doi: 10.1109/ICARCV50220.2020.9305519.
  • Feng, H. M. (2006). Self-Generation RBFNs using Evolutional PSO Learning. Neurocomputing, 70(1–3), 241–251. https://doi.org/10.1016/j.neucom.2006.03.007
  • Jain, M., Saihjpal, V., Singh, N., & Singh, S. B. (2022). An Overview of Variants and Advancements of PSO Algorithm. Applied Sciences, 12(17), 8392. https://doi.org/10.3390/app12178392
  • Yakar, M.; Yılmaz, H.M.; Mutluoǧlu, Ö. Comparative evaluation of excavation volume by TLS and total topographic station based methods. Lasers Eng. 2010, 19, 331–345.
  • Yakar, M., Yilmaz, H. M., & Mutluoglu, O. (2014). Performance of photogrammetric and terrestrial laser scanning methods in volume computing of excavtion and filling areas. Arabian Journal for Science and Engineering, 39, 387-394.
There are 68 citations in total.

Details

Primary Language English
Subjects Geomatic Engineering (Other)
Journal Section Research Article
Authors

Aleyna Başaran 0009-0006-3344-9236

Veli İlçi 0000-0002-9485-874X

Project Number PYO.MUH.1906.22.002
Publication Date
Submission Date July 20, 2024
Acceptance Date September 17, 2024
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Başaran, A., & İlçi, V. (n.d.). Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study. International Journal of Engineering and Geosciences, 10(1), 74-83. https://doi.org/10.26833/ijeg.1519533
AMA Başaran A, İlçi V. Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study. IJEG. 10(1):74-83. doi:10.26833/ijeg.1519533
Chicago Başaran, Aleyna, and Veli İlçi. “Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study”. International Journal of Engineering and Geosciences 10, no. 1 n.d.: 74-83. https://doi.org/10.26833/ijeg.1519533.
EndNote Başaran A, İlçi V Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study. International Journal of Engineering and Geosciences 10 1 74–83.
IEEE A. Başaran and V. İlçi, “Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study”, IJEG, vol. 10, no. 1, pp. 74–83, doi: 10.26833/ijeg.1519533.
ISNAD Başaran, Aleyna - İlçi, Veli. “Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study”. International Journal of Engineering and Geosciences 10/1 (n.d.), 74-83. https://doi.org/10.26833/ijeg.1519533.
JAMA Başaran A, İlçi V. Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study. IJEG.;10:74–83.
MLA Başaran, Aleyna and Veli İlçi. “Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study”. International Journal of Engineering and Geosciences, vol. 10, no. 1, pp. 74-83, doi:10.26833/ijeg.1519533.
Vancouver Başaran A, İlçi V. Accuracy Evaluation of LiDAR-SLAM Based 2-Dimensional Modelling for Indoor Environment: A Case Study. IJEG. 10(1):74-83.