Research Article
BibTex RIS Cite
Year 2024, Volume: 11 Issue: 2, 1 - 9, 16.06.2024
https://doi.org/10.30897/ijegeo.1456352

Abstract

References

  • Akpinar, A. (2016). How is quality of urban green spaces associated with physical activity and health?. Urban Forestry & Urban Greening, 16, 76-83.
  • Alsaaideh, B., Tateishi, R., Phong, D.X., Hoan, N.T., Al-Hanbali, A., Xiulian, B. (2017). New Urban Map of Eurasia Using MODIS and Multi-source Geospatial Data. Geo-spatial Information Science, 20 (1), 29–38. doi:10.1080/10095020.2017.1288418.
  • Diren Ustun, D., Kaplan, E., Unal, Y. (2022). Istanbul Urban Heat Island and Its Change Due to Urban Development Scenarios. Environment, Climate and Sustainability, 23(1), 55–68.
  • Feng, W., Liu, J. (2022). A Literature Survey of Local Climate Zone Classification: Status, Application, and Prospect. Buildings, 12, 1693.
  • Hadeel, A., Jabbar, M., Chen, X. (2009). Application of Remote Sensing and GIS to the Study of Land Use/Cover Change and Urbanization Expansion in Basrah Province, Southern Iraq. Geo-spatial Information Science, 12 (2), 135–141. doi:10.1007/s11806-009-0244-7.
  • Huang, B., Wang, J. (2020). Big Spatial Data for Urban and Environmental Sustainability. Geo-spatial Information Science, 23 (2), 125–140. doi:10.1080/10095020.2020.1754138.
  • Huang, X., Liu, A., Li, J. (2021). Mapping and Analyzing the Local Climate Zones in China’s 32 Major Cities Using Landsat Imagery Based on A Novel Convolutional Neural Network. Geo-spatial Information Science, 1–30. doi:10.1080/10095020. 2021.1892459.
  • Jiang, Z., Chen, Y., Jing, L. (2006). On Urban Heat Island of Beijing Based on Landsat TM Data. Geo-spatial Information Science, 9 (4), 293–297. doi:10. 1007/BF02826743.
  • Kuscu Simsek, C., Sengezer, S. (2012). The Importance of Green Areas in Reducing Urban Warming in the Istanbul Metropolitan Area. Megaron, 7(2): 116-128
  • Li, D., Ma, J., Cheng, T., van Genderen, J., Shao, Z. (2019). Challenges and Opportunities for the Development of Megacities. International Journal of Digital Earth, 12 (12), 1382–1395. doi:10.1080/17538947.2018.1512662.
  • Li, D., Zhao, X., Li, X. (2016). Remote Sensing of Human Beings – A Perspective from Nighttime Light. Geo-spatial Information Science, 19 (1), 69–79. doi:10.1080/10095020.2016.1159389.
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115, 3249–3263.
  • Memon, R.A., Leung, D.Y., Chunho, L. (2008). A review on the generation, determination and mitigation of urban heat island. Journal of Environmental Sciences, 20, 120–128.
  • Middel, A., Häb, K., Brazel, A.J., Martin, C.A., Guhathakurta, S. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16–28.
  • Ruiz, M.A., Correa, E.N. (2015). Adaptive model for outdoor thermal comfort assessment in an Oasis city of arid climate. Building and Environment, 85, 40–51.
  • Santamouris, M. (2014). Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703.
  • Shao, Z., Li, C., Li, D., Altan, O., Zhang, L., Ding, L. (2020). An Accurate Matching Method for Projecting Vector Data into Surveillance Video to Monitor and Protect Cultivated Land. ISPRS International Journal of Geo-Information, 9 (7), 448. doi:10.3390/ijgi9070448.
  • Shao, Z., Sumari, N.S., Portnov, A., Ujoh, F., Musakwa, W., Mandela, P.J. (2021). Urban Sprawl and Its Impact on Sustainable Urban Development: A Combination of Remote Sensing and Social Media Data. Geo-spatial Information Science, 24 (2), 241–255. doi:10.1080/10095020.2020.1787800.
  • Shen, P., Ouyang, L., Wang, C., Shi, Y., Su, Y. (2020). Cluster and Characteristic Analysis of Shanghai Metro Stations Based on Metro Card and Land-Use Data. Geo-spatial Information Science, 23 (4), 352–361. doi:10.1080/10095020.2020.1846463.
  • Stewart, I.D., Oke, T.R. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society. 93. 1879-1900. 10.1175/BAMS-D-11-00019.1.
  • Stewart, I.D., Oke, T.R., Krayenhoff, E.S. (2014). Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology, 34, 1062–1080.
  • Taha, H. (1997). Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25, 99–103.
  • Trinder, J., Liu, Q. (2020). Assessing Environmental Impacts of Urban Growth Using Remote Sensing. Geo-spatial Information Science, 23 (1), 20–39. doi:10.1080/10095020.2019.1710438.
  • Wu, H., Gui, Z., Yang, Z. (2020). Geospatial Big Data for Urban Planning and Urban Management. Geo-spatial Information Science, 23 (4), 273–274. doi:10.1080/10095020.2020.1854981.
  • Yang, C., Zhan, Q., Gao, S., Liu, H. (2020). Characterizing the Spatial and Temporal Variation of the Land Surface Temperature Hotspots in Wuhan from A Local Scale. Geo-spatial Information Science, 23 (4), 327–340. doi:10.1080/10095020. 2020.1834882.
  • Yang, J., Jin, S., Xiao, X., Jin, C., Xia, J.C., Li, X., Wang, S. (2019). Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustainable Cities and Society, 47, 101487.
  • Zheng, Y., Ren, C., Xu, Y., Wang, R., Ho, J., Lau, K., Ng, E. (2018). GIS-Based Mapping of Local Climate Zone in the High-Density City of Hong Kong. Urban Climate, 24, 419–448. doi:10.1016/j.uclim. 2017.05.008.
  • Zhou, L., Shao, Z., Wang, S., Huang, X. (2022). Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery. Geo-spatial Information Science. 25. 10.1080/10095020.2022.2030654.
  • Zhou, Q., Zhai, M., Yu, W. (2020). Exploring Point Zero: A Study of 20 Chinese Cities. Geo-spatial Information Science 23 (3), 258–272. doi:10.1080/10095020. 2020.1779011.
  • Zhou, X., Okaze, T., Ren, C., Cai, M., Ishida, Y., Mochida, A. (2020a). Mapping Local Climate Zones for a Japanese Large City by an Extended Workflow of WUDAPT Level 0 Method. Urban Climate, 33, 100660. doi:10.1016/j.uclim.2020.100660.
  • Zhou, X., Okaze, T., Ren, C., Cai, M., Ishida, Y., Watanabe, H., Mochida, A. (2020b). Evaluation of urban heat islands using local climate zones under the influences of sea-land breeze. Sustainable Cities and Society, 55, 102060. doi:10.1016/j.scs.2020.102060.

Local Climate Zone Classification Using YOLOV8 Modeling in Instance Segmentation Method

Year 2024, Volume: 11 Issue: 2, 1 - 9, 16.06.2024
https://doi.org/10.30897/ijegeo.1456352

Abstract

Local climate zones play a crucial role in understanding the microclimates within urban areas, contributing to urban planning, environmental sustainability, and human comfort. Istanbul, as a transcontinental city straddling Europe and Asia, exhibits a rich blend of historical and modern architecture, varying land use patterns, and diverse microclimates. In this study, using high-resolution Google Earth imagery for explores the classification, utilizing a cutting-edge deep learning architecture YOLOv8 model, of Local Climate Zones (LCZ) in Istanbul, a city known for its diverse and dynamic urban landscape. The latest cutting-edge YOLO model, YOLOv8, is designed for tasks such as object detection, image classification, and instance segmentation, showcasing its versatility in computer vision applications. Labeled data was created according to WUDAPT's sharing the things to consider when "create LCZ training areas" from google earth images. The model is trained on high-resolution, bird's-eye-view images of Istanbul obtained from Google Earth, meticulously labeled with LCZ categories. The results obtained from the test images demonstrate the model's efficacy in accurately classifying and segmenting LCZ categories, providing valuable insights into the local climate variations within Istanbul. This research contributes to the field of urban climate studies by offering a robust and scalable approach to LCZ classification using advanced deep learning techniques. The outcomes hold implications for urban planning, environmental sustainability, and informed decision-making in the context of Istanbul's unique and diverse urban environment.

References

  • Akpinar, A. (2016). How is quality of urban green spaces associated with physical activity and health?. Urban Forestry & Urban Greening, 16, 76-83.
  • Alsaaideh, B., Tateishi, R., Phong, D.X., Hoan, N.T., Al-Hanbali, A., Xiulian, B. (2017). New Urban Map of Eurasia Using MODIS and Multi-source Geospatial Data. Geo-spatial Information Science, 20 (1), 29–38. doi:10.1080/10095020.2017.1288418.
  • Diren Ustun, D., Kaplan, E., Unal, Y. (2022). Istanbul Urban Heat Island and Its Change Due to Urban Development Scenarios. Environment, Climate and Sustainability, 23(1), 55–68.
  • Feng, W., Liu, J. (2022). A Literature Survey of Local Climate Zone Classification: Status, Application, and Prospect. Buildings, 12, 1693.
  • Hadeel, A., Jabbar, M., Chen, X. (2009). Application of Remote Sensing and GIS to the Study of Land Use/Cover Change and Urbanization Expansion in Basrah Province, Southern Iraq. Geo-spatial Information Science, 12 (2), 135–141. doi:10.1007/s11806-009-0244-7.
  • Huang, B., Wang, J. (2020). Big Spatial Data for Urban and Environmental Sustainability. Geo-spatial Information Science, 23 (2), 125–140. doi:10.1080/10095020.2020.1754138.
  • Huang, X., Liu, A., Li, J. (2021). Mapping and Analyzing the Local Climate Zones in China’s 32 Major Cities Using Landsat Imagery Based on A Novel Convolutional Neural Network. Geo-spatial Information Science, 1–30. doi:10.1080/10095020. 2021.1892459.
  • Jiang, Z., Chen, Y., Jing, L. (2006). On Urban Heat Island of Beijing Based on Landsat TM Data. Geo-spatial Information Science, 9 (4), 293–297. doi:10. 1007/BF02826743.
  • Kuscu Simsek, C., Sengezer, S. (2012). The Importance of Green Areas in Reducing Urban Warming in the Istanbul Metropolitan Area. Megaron, 7(2): 116-128
  • Li, D., Ma, J., Cheng, T., van Genderen, J., Shao, Z. (2019). Challenges and Opportunities for the Development of Megacities. International Journal of Digital Earth, 12 (12), 1382–1395. doi:10.1080/17538947.2018.1512662.
  • Li, D., Zhao, X., Li, X. (2016). Remote Sensing of Human Beings – A Perspective from Nighttime Light. Geo-spatial Information Science, 19 (1), 69–79. doi:10.1080/10095020.2016.1159389.
  • Li, J., Song, C., Cao, L., Zhu, F., Meng, X., Wu, J. (2011). Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sensing of Environment, 115, 3249–3263.
  • Memon, R.A., Leung, D.Y., Chunho, L. (2008). A review on the generation, determination and mitigation of urban heat island. Journal of Environmental Sciences, 20, 120–128.
  • Middel, A., Häb, K., Brazel, A.J., Martin, C.A., Guhathakurta, S. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16–28.
  • Ruiz, M.A., Correa, E.N. (2015). Adaptive model for outdoor thermal comfort assessment in an Oasis city of arid climate. Building and Environment, 85, 40–51.
  • Santamouris, M. (2014). Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy, 103, 682–703.
  • Shao, Z., Li, C., Li, D., Altan, O., Zhang, L., Ding, L. (2020). An Accurate Matching Method for Projecting Vector Data into Surveillance Video to Monitor and Protect Cultivated Land. ISPRS International Journal of Geo-Information, 9 (7), 448. doi:10.3390/ijgi9070448.
  • Shao, Z., Sumari, N.S., Portnov, A., Ujoh, F., Musakwa, W., Mandela, P.J. (2021). Urban Sprawl and Its Impact on Sustainable Urban Development: A Combination of Remote Sensing and Social Media Data. Geo-spatial Information Science, 24 (2), 241–255. doi:10.1080/10095020.2020.1787800.
  • Shen, P., Ouyang, L., Wang, C., Shi, Y., Su, Y. (2020). Cluster and Characteristic Analysis of Shanghai Metro Stations Based on Metro Card and Land-Use Data. Geo-spatial Information Science, 23 (4), 352–361. doi:10.1080/10095020.2020.1846463.
  • Stewart, I.D., Oke, T.R. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society. 93. 1879-1900. 10.1175/BAMS-D-11-00019.1.
  • Stewart, I.D., Oke, T.R., Krayenhoff, E.S. (2014). Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. International Journal of Climatology, 34, 1062–1080.
  • Taha, H. (1997). Urban climates and heat islands: Albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25, 99–103.
  • Trinder, J., Liu, Q. (2020). Assessing Environmental Impacts of Urban Growth Using Remote Sensing. Geo-spatial Information Science, 23 (1), 20–39. doi:10.1080/10095020.2019.1710438.
  • Wu, H., Gui, Z., Yang, Z. (2020). Geospatial Big Data for Urban Planning and Urban Management. Geo-spatial Information Science, 23 (4), 273–274. doi:10.1080/10095020.2020.1854981.
  • Yang, C., Zhan, Q., Gao, S., Liu, H. (2020). Characterizing the Spatial and Temporal Variation of the Land Surface Temperature Hotspots in Wuhan from A Local Scale. Geo-spatial Information Science, 23 (4), 327–340. doi:10.1080/10095020. 2020.1834882.
  • Yang, J., Jin, S., Xiao, X., Jin, C., Xia, J.C., Li, X., Wang, S. (2019). Local climate zone ventilation and urban land surface temperatures: Towards a performance-based and wind-sensitive planning proposal in megacities. Sustainable Cities and Society, 47, 101487.
  • Zheng, Y., Ren, C., Xu, Y., Wang, R., Ho, J., Lau, K., Ng, E. (2018). GIS-Based Mapping of Local Climate Zone in the High-Density City of Hong Kong. Urban Climate, 24, 419–448. doi:10.1016/j.uclim. 2017.05.008.
  • Zhou, L., Shao, Z., Wang, S., Huang, X. (2022). Deep learning-based local climate zone classification using Sentinel-1 SAR and Sentinel-2 multispectral imagery. Geo-spatial Information Science. 25. 10.1080/10095020.2022.2030654.
  • Zhou, Q., Zhai, M., Yu, W. (2020). Exploring Point Zero: A Study of 20 Chinese Cities. Geo-spatial Information Science 23 (3), 258–272. doi:10.1080/10095020. 2020.1779011.
  • Zhou, X., Okaze, T., Ren, C., Cai, M., Ishida, Y., Mochida, A. (2020a). Mapping Local Climate Zones for a Japanese Large City by an Extended Workflow of WUDAPT Level 0 Method. Urban Climate, 33, 100660. doi:10.1016/j.uclim.2020.100660.
  • Zhou, X., Okaze, T., Ren, C., Cai, M., Ishida, Y., Watanabe, H., Mochida, A. (2020b). Evaluation of urban heat islands using local climate zones under the influences of sea-land breeze. Sustainable Cities and Society, 55, 102060. doi:10.1016/j.scs.2020.102060.
There are 31 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing
Journal Section Research Articles
Authors

Melike Nicancı Sinanoğlu 0009-0001-8230-1071

Şinasi Kaya 0000-0002-4962-0492

Publication Date June 16, 2024
Submission Date March 21, 2024
Acceptance Date May 20, 2024
Published in Issue Year 2024 Volume: 11 Issue: 2

Cite

APA Nicancı Sinanoğlu, M., & Kaya, Ş. (2024). Local Climate Zone Classification Using YOLOV8 Modeling in Instance Segmentation Method. International Journal of Environment and Geoinformatics, 11(2), 1-9. https://doi.org/10.30897/ijegeo.1456352