Research Article
BibTex RIS Cite

BAMBU, PAMUK VE VİSKON ELYAFINDAN ÜRETİLEN ÖRME KUMAŞLARIN ANTİBAKTERİYEL VE BAZI FİZİKSEL ÖZELLİKLERİNİN KARŞILAŞTIRILMASI

Year 2024, , 106 - 115, 14.07.2024
https://doi.org/10.47933/ijeir.1481642

Abstract

Bu çalışmada pamuk, bambu ve viskon liflerinin tekstil üretimine uygunluğu incelenmiştir. Rejenere selülozik bir elyaf olan bambu, ekolojik özelliklerinden dolayı sektörde popülerlik kazanmıştır. Bambudan yapılan kumaşlar konfor, kırışma direnci ve termal düzenleme sergiler. Ek olarak, yüksek nem emilimi, parlaklık, yumuşaklık ve UV korumasının yanı sıra doğal antibakteriyel, hipoalerjenik ve biyolojik olarak parçalanabilir özelliklere de sahiptirler. Çalışmada bu elyaflardan üretilen örme kumaşlar karşılaştırılarak su buharı geçirgenliği, hava geçirgenliği, patlama mukavemeti, su emiciliği, aşınma direnci ve antibakteriyel özellikleri uluslararası standartlara göre değerlendirildi. Sonuçlar, bambu ve pamuk liflerinin benzer su buharı geçirgenliğine sahip olduğunu, her ikisinin de viskon liflerinden daha yüksek olduğunu gösterdi. Bambu elyafının hava geçirgenliği pamuk ve viskon elyaflara göre oldukça yüksektir. Üstelik bambunun su emme özelliği pamuk ve viskonu geride bırakarak terin daha iyi emilmesine olanak sağlar. Bambu lifi ayrıca pamuk ve viskona kıyasla daha yüksek bakteri yok etme oranlarıyla üstün antibakteriyel özellikler gösterdi. Bambudan yapılan kumaşlar, pamuğa göre daha yüksek patlama mukavemeti ve karşılaştırılabilir boncuklanma değerleri sergileyerek viskondan daha iyi performans gösterdi. Genel olarak bambu elyafı, pamuk ve viskona kıyasla daha iyi hava geçirgenliği, su emiciliği, antibakteriyel özellikler, aşınma direnci ve patlama mukavemeti göstererek onu serin ve rahat tekstiller için arzu edilen bir seçim haline getiriyor.

References

  • [1] Karakan G., (2009). Teknik Tekstillerin Koruyucu Yapılarda Kullanımı. Tekstil Teknolojileri Elektronik Dergisi, Cilt: 3, No: 1, 65-70.
  • [2] Avcı, H., (2007). Yeni Liflerden Mamul Çorapların Konfor Özellikleri. İstanbul Teknik Üniversitesi, Fen bilimleri Enstitüsü, Yüksek lisans tezi, İstanbul.
  • [3] Özgüney A. T., (2016). Investigating The Effects Of Different Softeners on Pilling Properties And Durability to Washing of Bamboo Knitted Fabrics. Tekstil ve Konfeksiyon Dergisi, Cilt: 26, Sayı: 3, 307 – 313.
  • [4] Türksoy, H. G., Üstüntağ, S. & Çarkıt, G. (2017). Bambu/Pamuk Karışımlı İpliklerden Örülen Kumaşların Termal Konfor Özellikleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19 (56), 510-518.
  • [5] Majumdar, A., Mukhopadhyay, S., & Yadav, R. (2010). Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. International Journal of Thermal Sciences, 49(10), 2042-2048.
  • [6] Chidambaram, P., Govindan, R., & Venkatraman, K. C. (2012). Study of thermal comfort properties of cotton/regenerated bamboo knitted fabrics. African Journal of Basic & Applied Sciences, 4(2), 60-66.
  • [7] Aruchamy, K., Subramani, S. P., Palaniappan, S. K., Pal, S. K., Mylsamy, B., & Chinnasamy, V. (2022). Effect of blend ratio on the thermal comfort characteristics of cotton/bamboo blended fabrics. Journal of Natural Fibers, 19(1), 105-114.
  • [8] Kim, H. A. (2017). Physical properties of ring, compact, and air vortex yarns made of PTT/wool/modal and wearing comfort of their knitted fabrics for high emotional garments. The Journal of the Textile Institute, 108(9), 1647–1656.
  • [9] Saricam, C., & Kalaoglu, F. (2014). Investigation of the wicking and drying behaviour of polyester woven fabrics. Fibers & Textiles in Eastern Europe, 22(3), 73–78.
  • [10]Tashkandi, S., Wang, L., & Kanesalingam, S. (2013). An investigation of thermal comfort properties of Abaya woven fabrics. Journal of the Textile Institute, 104(8), 830–837.
  • [11] Varshney, R. K., Kothari, V. K., & Dhamija, S. (2010). A study on thermophysiological comfort properties of fabrics in relation to constituent fiber fineness and cross-sectional shapes. Journal of the Textile Institute, 101(6), 495–505. [12] Karakan G., Abdulla, G., & Kodaloğlu, M. (2010). Murata vortex iplik yapısında merkez ve sargı liflerinin incelenmesi. Tekstil Teknolojileri Elektronik Dergisi, 4(3),9-19.
  • [13] Vimal, J. T., Murugan, R., & Subramaniam, V. (2016). Effect of weave parameters on the air resistance of woven fabrics. Fibers & Textiles in Eastern Europe, 24(1), 67–72.
  • [14] Çeven E.K, Karakan Günaydin G. (2018). Investigation of Moisture Management and Air Permeability Properties of Fabrics with Linen and Linen-Polyester Blend Yarns. Fibers & Textiles in Eastern Europe 2018; 26, 4(130): 39-47. DOI:10.5604/01.3001.0012.1311.
  • [15] Karakan G., Abdulla, G., & Kodaloğlu, M., (2009). Murata vortex iplik eğirme sistemi ve iplik özelliklerinin incelenmesi. Tekstil Teknolojileri Elektronik Dergisi, 3(3), 47-55.
  • [16]Kodaloğlu, M., & Karakan Günaydın, G. (2021). Çözgülü örme işletmesinde toz maruziyet ölçümlerinin iş sağlığı ve güvenliği açısından değerlendirilmesi. International Journal of Engineering and Innovative Research, 3(1), 1-11.
  • [17]Kodaloğlu, F. A., & Kodaloğlu, M. (2023). Determining the drying rates of fabrics with different knit structures by fuzzy logic method. International Journal of Computational and Experimental Science and Engineering, 9(2), 191-196.
  • [18] Arık, B.,(2013). Kitosanın Farklı Aplikasyon Yöntemleri Uygulanarak Medikal Tekstillerde Kullanılabilirliğinin Araştırılması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 236s, İzmir.
  • [19] Tutak, M., & Gün, F. (2011). Antimicrobial effect of CI Basic Red 18: 1 and CI Basic Yellow 51 on some pathogenic bacteria. Fibers and Polymers, 12(4), 457-460.
  • [20] Büyükakıncı, Y. (2009). Bambu Elyafının Özelliklerinin İncelenmesi. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, İstanbul.
  • [21] Liu, Y., Hu, H., (2008). X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers. 9 (6), 735-739.
  • [22] Ray, A.K., Das, S.K., Mondal, S., Ramachandrarao, P., (2004). Microstructural characterization of bamboo. Journal of Materials Science. 39 (3), 1055-1060.
  • [23] Xu, X., Wang, Y., Zhang, X., Jing, G., Yu, D., Wang, S., (2006). Effects on surface properties of natural bamboo fibers treated with atmospheric pressure argon plasma. Surface and Interface Analysis 38 (8), 1211-f1217.
  • [24] Das, M., Pal, A., Chakraborty, D., (2006). Effects of mercerization of bamboo strips on mechanical properties of unidirectional bambooenovolac composites. Journal of Applied Polymer Science 100 (1), 238-244.
  • [25] Erdumlu, N., Ozipek, B.,( 2008). Investigation of regenerated bamboo fibre and yarn characteristics. Fibres and Textiles in Eastern Europe 4 (69), 43e47.
  • [26] Jais, F. N. M., Mokeramin, M., Roslan, M. N., Halip, J. A., & Jusoh, W. A. W. (2023). Bamboo Fiber for Textile Applications. In Multifaceted Bamboo: Engineered Products and Other Applications. Springer Nature Singapore. pp. 275-290.
  • [27] Çeven, E. K., & Karakan Günaydın, G. (2021). Evaluation of some comfort and mechanical properties of knitted fabrics made of different regenerated cellulosic fibres. Fibers and Polymers, 22(2), 567-577.
  • [28] Dündar E., (2008). Çeşitli Selülozik İpliklerden Üretilen Örme Kumaşların Performanslarının Karşılaştırılması, İstanbul Teknik Üniversitesi, , Fen Bilimleri Enstitüsü, Yüksek lisans tezi, İstanbul.
  • [29] Kim, H. A. (2021). Water/moisture vapor permeabilities and thermal wear comfort of the Coolmax®/bamboo/tencel included PET and PP composite yarns and their woven fabrics. The Journal of The Textile Institute, 112(12), 1940-1953.
  • [30] Jasińska, I. (2009). Assessment of a fabric surface after the pilling process based on image analysis. Fibres & Textiles in Eastern Europe, 17(2), 73.
  • [31] Tang, K. P. M., Kan, C. W., & Fan, J. T. (2014). Evaluation of water absorption and transport property of fabrics. Textile Progress, 46(1), 1-132. Tang, K. P. M., Kan, C. W., & Fan, J. T. (2014). Evaluation of water absorption and transport property of fabrics. Textile Progress, 46(1), 1-132.
  • [32] Seval, U. (2021). The bursting strength properties of knitted fabrics containing recycled polyester fiber. The Journal of The Textile Institute, 112(12), 1998-2003.
  • [33]Telli, T. S., & Kodaloğlu, M., (2003). Kumaş mukavemeti değişiminin uzman sistemle incelenmesi . Tekstil Maraton Dergisi, 13(66), 51-53.
  • [34]Kodaloğlu, M., Dayık, M., & Çakmak, E., (2005). Büküm kaybının kumaş mukavemeti üzerine etkisi. Tekstil Teknik Dergisi, 21(248), 228-230
  • [35] Zhang, Z., Xie, Q., Chao, T., Cui, L., Wang, P., Yu, Y., & Wang, Q. (2023). Construction of rough surface based on zein and rosin to hydrophobically functionalize cotton fabric with antibacterial activity. Progress in Organic Coatings, 184, 107839.
  • [36] Liu, C., Zhang, S., Yan, S., Pan, M., & Huang, H. (2024). Mechanical and Antibacterial Properties of Bamboo Charcoal/ZnO-Modified Bamboo Fiber/Polylactic Acid Composites. Forests, 15(2), 371.

COMPARISON OF ANTIBACTERIAL AND SOME PHYSICAL PROPERTIES OF KNITTED FABRICS PRODUCED FROM BAMBOO, COTTON AND VISCOSE FIBER

Year 2024, , 106 - 115, 14.07.2024
https://doi.org/10.47933/ijeir.1481642

Abstract

Cotton, bamboo, and viscose fibers were examined in this study for their suitability in textile production. Bamboo, being a regenerated cellulosic fiber, has gained popularity in the industry due to its ecological properties. Fabrics made from bamboo exhibit comfort, wrinkle resistance, and thermal regulation. Additionally, they possess natural antibacterial, hypoallergenic, and biodegradable properties, along with high moisture absorption, shine, softness, and UV protection. The study compared knitted fabrics from these fibers, evaluating their water vapor permeability, air permeability, burst strength, water absorbency, abrasion resistance, and antibacterial properties according to international standards. Results showed that bamboo and cotton fibers have similar water vapor permeability, both higher than viscose fibers. Bamboo fiber's air permeability is notably higher than cotton and viscose fibers. Moreover, bamboo's water absorption surpasses cotton and viscose, leading to better sweat absorption. Bamboo fiber also demonstrated superior antibacterial properties compared to cotton and viscose, with higher bacterial eradication rates. Fabrics made from bamboo exhibited higher bursting strength and comparable pilling values to cotton, outperforming viscose. Overall, bamboo fiber demonstrated better air permeability, water absorbency, antibacterial properties, abrasion resistance, and bursting strength compared to cotton and viscose, making it a desirable choice for cool and comfortable textiles.

References

  • [1] Karakan G., (2009). Teknik Tekstillerin Koruyucu Yapılarda Kullanımı. Tekstil Teknolojileri Elektronik Dergisi, Cilt: 3, No: 1, 65-70.
  • [2] Avcı, H., (2007). Yeni Liflerden Mamul Çorapların Konfor Özellikleri. İstanbul Teknik Üniversitesi, Fen bilimleri Enstitüsü, Yüksek lisans tezi, İstanbul.
  • [3] Özgüney A. T., (2016). Investigating The Effects Of Different Softeners on Pilling Properties And Durability to Washing of Bamboo Knitted Fabrics. Tekstil ve Konfeksiyon Dergisi, Cilt: 26, Sayı: 3, 307 – 313.
  • [4] Türksoy, H. G., Üstüntağ, S. & Çarkıt, G. (2017). Bambu/Pamuk Karışımlı İpliklerden Örülen Kumaşların Termal Konfor Özellikleri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 19 (56), 510-518.
  • [5] Majumdar, A., Mukhopadhyay, S., & Yadav, R. (2010). Thermal properties of knitted fabrics made from cotton and regenerated bamboo cellulosic fibres. International Journal of Thermal Sciences, 49(10), 2042-2048.
  • [6] Chidambaram, P., Govindan, R., & Venkatraman, K. C. (2012). Study of thermal comfort properties of cotton/regenerated bamboo knitted fabrics. African Journal of Basic & Applied Sciences, 4(2), 60-66.
  • [7] Aruchamy, K., Subramani, S. P., Palaniappan, S. K., Pal, S. K., Mylsamy, B., & Chinnasamy, V. (2022). Effect of blend ratio on the thermal comfort characteristics of cotton/bamboo blended fabrics. Journal of Natural Fibers, 19(1), 105-114.
  • [8] Kim, H. A. (2017). Physical properties of ring, compact, and air vortex yarns made of PTT/wool/modal and wearing comfort of their knitted fabrics for high emotional garments. The Journal of the Textile Institute, 108(9), 1647–1656.
  • [9] Saricam, C., & Kalaoglu, F. (2014). Investigation of the wicking and drying behaviour of polyester woven fabrics. Fibers & Textiles in Eastern Europe, 22(3), 73–78.
  • [10]Tashkandi, S., Wang, L., & Kanesalingam, S. (2013). An investigation of thermal comfort properties of Abaya woven fabrics. Journal of the Textile Institute, 104(8), 830–837.
  • [11] Varshney, R. K., Kothari, V. K., & Dhamija, S. (2010). A study on thermophysiological comfort properties of fabrics in relation to constituent fiber fineness and cross-sectional shapes. Journal of the Textile Institute, 101(6), 495–505. [12] Karakan G., Abdulla, G., & Kodaloğlu, M. (2010). Murata vortex iplik yapısında merkez ve sargı liflerinin incelenmesi. Tekstil Teknolojileri Elektronik Dergisi, 4(3),9-19.
  • [13] Vimal, J. T., Murugan, R., & Subramaniam, V. (2016). Effect of weave parameters on the air resistance of woven fabrics. Fibers & Textiles in Eastern Europe, 24(1), 67–72.
  • [14] Çeven E.K, Karakan Günaydin G. (2018). Investigation of Moisture Management and Air Permeability Properties of Fabrics with Linen and Linen-Polyester Blend Yarns. Fibers & Textiles in Eastern Europe 2018; 26, 4(130): 39-47. DOI:10.5604/01.3001.0012.1311.
  • [15] Karakan G., Abdulla, G., & Kodaloğlu, M., (2009). Murata vortex iplik eğirme sistemi ve iplik özelliklerinin incelenmesi. Tekstil Teknolojileri Elektronik Dergisi, 3(3), 47-55.
  • [16]Kodaloğlu, M., & Karakan Günaydın, G. (2021). Çözgülü örme işletmesinde toz maruziyet ölçümlerinin iş sağlığı ve güvenliği açısından değerlendirilmesi. International Journal of Engineering and Innovative Research, 3(1), 1-11.
  • [17]Kodaloğlu, F. A., & Kodaloğlu, M. (2023). Determining the drying rates of fabrics with different knit structures by fuzzy logic method. International Journal of Computational and Experimental Science and Engineering, 9(2), 191-196.
  • [18] Arık, B.,(2013). Kitosanın Farklı Aplikasyon Yöntemleri Uygulanarak Medikal Tekstillerde Kullanılabilirliğinin Araştırılması. Ege Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 236s, İzmir.
  • [19] Tutak, M., & Gün, F. (2011). Antimicrobial effect of CI Basic Red 18: 1 and CI Basic Yellow 51 on some pathogenic bacteria. Fibers and Polymers, 12(4), 457-460.
  • [20] Büyükakıncı, Y. (2009). Bambu Elyafının Özelliklerinin İncelenmesi. Marmara Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, İstanbul.
  • [21] Liu, Y., Hu, H., (2008). X-ray diffraction study of bamboo fibers treated with NaOH. Fibers and Polymers. 9 (6), 735-739.
  • [22] Ray, A.K., Das, S.K., Mondal, S., Ramachandrarao, P., (2004). Microstructural characterization of bamboo. Journal of Materials Science. 39 (3), 1055-1060.
  • [23] Xu, X., Wang, Y., Zhang, X., Jing, G., Yu, D., Wang, S., (2006). Effects on surface properties of natural bamboo fibers treated with atmospheric pressure argon plasma. Surface and Interface Analysis 38 (8), 1211-f1217.
  • [24] Das, M., Pal, A., Chakraborty, D., (2006). Effects of mercerization of bamboo strips on mechanical properties of unidirectional bambooenovolac composites. Journal of Applied Polymer Science 100 (1), 238-244.
  • [25] Erdumlu, N., Ozipek, B.,( 2008). Investigation of regenerated bamboo fibre and yarn characteristics. Fibres and Textiles in Eastern Europe 4 (69), 43e47.
  • [26] Jais, F. N. M., Mokeramin, M., Roslan, M. N., Halip, J. A., & Jusoh, W. A. W. (2023). Bamboo Fiber for Textile Applications. In Multifaceted Bamboo: Engineered Products and Other Applications. Springer Nature Singapore. pp. 275-290.
  • [27] Çeven, E. K., & Karakan Günaydın, G. (2021). Evaluation of some comfort and mechanical properties of knitted fabrics made of different regenerated cellulosic fibres. Fibers and Polymers, 22(2), 567-577.
  • [28] Dündar E., (2008). Çeşitli Selülozik İpliklerden Üretilen Örme Kumaşların Performanslarının Karşılaştırılması, İstanbul Teknik Üniversitesi, , Fen Bilimleri Enstitüsü, Yüksek lisans tezi, İstanbul.
  • [29] Kim, H. A. (2021). Water/moisture vapor permeabilities and thermal wear comfort of the Coolmax®/bamboo/tencel included PET and PP composite yarns and their woven fabrics. The Journal of The Textile Institute, 112(12), 1940-1953.
  • [30] Jasińska, I. (2009). Assessment of a fabric surface after the pilling process based on image analysis. Fibres & Textiles in Eastern Europe, 17(2), 73.
  • [31] Tang, K. P. M., Kan, C. W., & Fan, J. T. (2014). Evaluation of water absorption and transport property of fabrics. Textile Progress, 46(1), 1-132. Tang, K. P. M., Kan, C. W., & Fan, J. T. (2014). Evaluation of water absorption and transport property of fabrics. Textile Progress, 46(1), 1-132.
  • [32] Seval, U. (2021). The bursting strength properties of knitted fabrics containing recycled polyester fiber. The Journal of The Textile Institute, 112(12), 1998-2003.
  • [33]Telli, T. S., & Kodaloğlu, M., (2003). Kumaş mukavemeti değişiminin uzman sistemle incelenmesi . Tekstil Maraton Dergisi, 13(66), 51-53.
  • [34]Kodaloğlu, M., Dayık, M., & Çakmak, E., (2005). Büküm kaybının kumaş mukavemeti üzerine etkisi. Tekstil Teknik Dergisi, 21(248), 228-230
  • [35] Zhang, Z., Xie, Q., Chao, T., Cui, L., Wang, P., Yu, Y., & Wang, Q. (2023). Construction of rough surface based on zein and rosin to hydrophobically functionalize cotton fabric with antibacterial activity. Progress in Organic Coatings, 184, 107839.
  • [36] Liu, C., Zhang, S., Yan, S., Pan, M., & Huang, H. (2024). Mechanical and Antibacterial Properties of Bamboo Charcoal/ZnO-Modified Bamboo Fiber/Polylactic Acid Composites. Forests, 15(2), 371.
There are 35 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Feyza Akarslan Kodaloğlu 0000-0002-7855-8616

Early Pub Date June 24, 2024
Publication Date July 14, 2024
Submission Date May 10, 2024
Acceptance Date June 3, 2024
Published in Issue Year 2024

Cite

APA Akarslan Kodaloğlu, F. (2024). COMPARISON OF ANTIBACTERIAL AND SOME PHYSICAL PROPERTIES OF KNITTED FABRICS PRODUCED FROM BAMBOO, COTTON AND VISCOSE FIBER. International Journal of Engineering and Innovative Research, 6(2), 106-115. https://doi.org/10.47933/ijeir.1481642

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License