Research Article
BibTex RIS Cite

Elma Bitkisindeki Hastalıkların Yapay Zekâ Yöntemleri ile Tespiti ve Yapay Zekâ Yöntemlerinin Performanslarının Karşılaştırılması

Year 2020, , 194 - 210, 30.11.2020
https://doi.org/10.47933/ijeir.772514

Abstract

Yapay zekânın hayatımıza girmesiyle tarım alanında yapılan yapay zekâ uygulamaları oldukça popüler hale gelmiştir. Tarım alanında karşılaşılan bitki hastalıkları üzerinde durulması gereken önemli bir konu olup bu problemin çözümü için yapay zekâdan yardım alınmaktadır. Çalışmada, elma bitkisindeki uyuz, siyah çürük ve pas hastalığına sahip yaprakların yapay zekâ ile tespiti için evrişimsel sinir ağları (CNN) mimarileri kullanılmıştır. Çalışmada kullanılan CNN içerisinde yer alan AlexNet, DenseNet-121, ResNet-34, VGG16-BN ve Squeezenet1_0 mimarilerinin karışıklık matrisine göre performansları değerlendirilerek en iyi doğruluk, duyarlılık, özgüllük ve F-skor değerleri bulunmuştur. Sonuç olarak test veri seti için yapay zekâ ile elma bitkisindeki hastalık tespitinde en iyi modelin duyarlılık, özgüllük, doğruluk ve F-skor için sırasıyla %97,64, %99,54, %99,52, %98,62 değerleri ile ResNet-34 olduğu belirlenmiştir.

References

  • [1] Direk, M. Tarım tarihi ve deontoloji. 2th ed: 2012.
  • [2] Türker MMÖU, Akdemir B, Acar AÇAİ., Öztürk R, Eminoğlu MB. Tarımda dijital çağ. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1. Ankara: Ankara Üniversitesi Basın Yayın Müdürlüğü; 2020. p. 55-78.
  • [3] Tümenbatur A. (2019). Tarım-gıda bütünleşik tedarik zinciri tasarımı: domates ürünü uygulaması. İstanbul: Maltepe Üniversitesi; 2019.
  • [4] Hayaloğlu P. İklim değişikliğinin tarım sektörü ve ekonomik büyüme üzerindeki etkileri. Gümüşhane University Electronic Journal of the Institute of Social Science/Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi. 2018; 9(25):1-12.
  • [5] Özaydın G, Çelik Y. Tarım sektöründe arge ve inovasyon. Tarım Ekonomisi Dergisi. 2019; 25(1):1-13.
  • [6] Korkmaz F, Topkaya Ş, Yanar Y. Tokat Kabakgil üretim alanlarında enfeksiyon oluşturan virüslerin belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi. 2018;7(2):46-56.
  • [7] Eğilmez D, Boyraz N. Aksaray ili buğday ve arpa ekim alanlarındaki fungal hastalıkların son yıllardaki görünümü üzerine bir araştırma. Bahri Dağdaş Bitkisel Araştırma Dergisi. 2019; 8(2):322-335.
  • [8] Canhilal R, Tiryaki O. Kayseri ve civarında bitki koruma uygulamaları: problemler ve çözüm önerileri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2010; 26(2):88-101.
  • [9] Altas Z, Ozguven MM, Yanar Y. Determination of sugar beet leaf spot disease level (cercospora beticola sacc.) with ımage processing technique by using drone. Current Investigations in Agriculture and Current Research. 2018;5(3):621-631.
  • [10] Russell SJ, Norvig P. Artificial intelligence: a modern approach. 3rd ed. Pearson Education Inc:New Jersey;2016.
  • [11] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology. 2017;2(4):230-243.
  • [12] Lu H, Li Y, Chen M, Kim H, Serikawa S. Brain intelligence: go beyond artificial intelligence. Mobile Networks and Applications. 2018;23(2):368-375.
  • [13] Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts, HJ. Artificial intelligence in radiology. Nature Reviews Cancer. 2018;18(8):500-510.
  • [14] El Naqa I, Haider MA, Giger ML, & Ten Haken RK. Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century. The British Journal of Radiology. 2020; 93(1106): 1-15.
  • [15] Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017; 69(1):36-40.
  • [16] Çoban T. Sinemada yapay zeka. Ordu: Ordu Üniversitesi Sosyal Bilimler Enstitüsü; 2018.
  • [17] Warwick K, Shah H. Can machines think? a report on turing test experiments at the royal society. Journal of experimental & Theoretical artificial Intelligence. 2016;28(6):989-1007.
  • [18] Sindhuja R. Artificial intelligence and its applications in various fields. International Journal for Research Trends and Innovation. 2018;3(8)
  • [19] Sucu İ, Ataman E. Dijital evrenin yeni dünyası olarak yapay zeka ve her filmi üzerine bir çalışma. Yeni Medya Elektronik Dergisi. 2020; 4(1):40-52.
  • [20] Evans GW. Artificial intelligence: where we came from, where we are now, and where we are going. Victoria: University of Victoria; 2017.
  • [21] Jaakkola H. Henno J. Mäkelä J. Thalheim B. Artificial ıntelligence yesterday, today and tomorrow. 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2019. Opatija Croatia: IEEE;2019. p. 860-867.
  • [22] Odası ZM. Türkiye ziraat mühendisliği ıx. teknik kongresi bildiriler kitabı-1. 2020.
  • [23] Korkut UB. Göktürk ÖB. Yildiz O. Detection of plant diseases by machine learning. 26th Signal Processing and Communications Applications Conference, SIU 2018. Izmir Turkey: IEEE;2018. p. 1-4.
  • [24] Wicaksono G. Andryana S. Aplikasi pendeteksi penyakit pada daun tanaman apel dengan metode convolutional neural network. Journal of Information Technology and Computer Science. 2020; 5(1):9-16.
  • [25] Cruz A, Ampatzidis Y, Pierro R, Materazzi A, Panattoni A, De Bellis L, Luvisi A, et al. Detection of grapevine yellows symptoms in vitis vinifera L. with artificial intelligence. Computers and electronics in agriculture. 2019;157:63-76.
  • [26] Shruthi U. Nagaveni V. Raghavendra BK. A review on machine learning classification techniques for plant disease detection. 5th International Conference on Advanced Computing & Communication Systems, ICACCS 2019. Coimbatore, India: IEEE; 2019. p. 281-284.
  • [27] Fang T. Chen P. Zhang J. Wang B. Identification of apple leaf diseases based on convolutional neural network. In International Conference on Intelligent Computing 2019. Cham: Springer; 2019. p. 553-564.
  • [28] Baranwal S. Khandelwal S. Arora A. Deep learning convolutional neural network for apple leaves disease detection. Proceedings of International Conference on Sustainable Computing in Science, Technology and Management, SUSCOM 2019. India: SSRN;2019. p. 260-267.
  • [29] Alruwaili M, Abd El-Ghany S, Shehab A. An enhanced plant disease classifier model based on deep learning techniques. International Journal of Engineering and Advanced Techonology. 2019;9(1):7159-7164.
  • [30] Ferentinos KP. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture. 2018;145:311-318.
  • [31] Khitthuk C. Srikaew A. Attakitmongcol K. Kumsawat P. Plant Leaf Disease Diagnosis from Color Imagery Using Co-Occurrence Matrix and Artificial Intelligence System. International Electrical Engineering Congress, İEECON 2018. Thailand: IEEE; 2019. p. 1-4.
  • [32] Singh V, Misra AK. Detection of plant leaf diseases using image segmentation and soft computing techniques. Information processing in Agriculture. 2017;4(1):41-49.
  • [33] Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience. 2016
  • [34] Nachtigall LG. Araujo RM. Nachtigall GR. Classification of apple tree disorders using convolutional neural Networks. 28th International Conference on Tools with Artificial Intelligence, ICTAI 2016. San Jose, CA, USA: IEEE;2016. p. 472-476.
  • [35] Acar E. Yapay zeka yöntemleriyle bitki yaprak imgelerinde pas hastalıklarının tespiti [yüksek lisans tezi]. Diyarbakır: Dicle Üniversitesi; 2015
  • [36] Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep learning for health informatics. journal of biomedical and health informatics, IEEE. 2016;21(1):4-21.
  • [37] Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. Elseiver. 2015;61:85-117.
  • [38] Pan SJ, Yang Q. A survey on transfer learning. Transactions on knowledge and data engineering, IEEE. 2009;22(10):1345-1359.
  • [39] Kızrak MA, Bolat B. Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma. Bilişim Teknolojileri Dergisi, 2018;11(3):263-286.
  • [40] Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Chen T, et al. Recent advances in convolutional neural networks. Pattern Recognition. 2018;77,:354-377.
  • [41] Min S, Lee B, Yoon S. Deep learning in bioinformatics. Briefings in bioinformatics. 2017;18(5):851-869.
  • [42] Milletari F. Navab N. Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation. Fourth International Conference on 3D Vision, 3DV 2016. ABD: IEEE; 2016. p. 565-571.
  • [43] Hanbay K. Hyperspectral image classification using convolutional neural network and two-dimensional complex Gabor transform. Journal of the faculty of engıneerıng and archıtecture of gazı unıversıty. 2020;35(1):443-456.
  • [44] Niepert M. Ahmed M. Kutzkov K. Learning convolutional neural networks for graphs. In International conference on machine learning. Germany:2016. p. 2014-2023.
  • [45] Kurt F. Evrişimli Sinir Ağlarında Hiper Parametrelerin Etkisinin İncelenmesi [yüksek lisans tezi]. Ankara:Hacettepe Üniversitesi; 2018
  • [46] Lu S, Lu Z, Zhang YD. Pathological brain detection based on AlexNet and transfer learning. Journal of computational science. 2019;30:41-47.
  • [47] Krizhevsky A. Sutskever I. Hinton GE. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. Kanada:2012. p. 1097-1105.
  • [48] Özgür A, Fatih NAR. Derin ögrenme yöntemleri kullanarak ekin ile yabancı otların birbirinden ayırt edilmesi. International Conference on Computer Technologies and Applications in Food and Agriculture. Konya: ICCTAFA;2019. p. 76-89
  • [49] Ballester P, Araujo RM. On the performance of GoogLeNet and AlexNet applied to sketches. In Thirtieth AAAI Conference on Artificial Intelligence. Phoenix: AAAI;2016. p. 1124-1128.
  • [50] Xiao L, Yan Q, Deng S. Scene classification with improved AlexNet model. In 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Nanjing:IEEE;2017. p. 1-6.
  • [51] Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, et al. The history began from alexnet: A comprehensive survey on deep learning approaches. Cornell University Computer Vision and Pattern Recognition. 2018; 1: 1-39.
  • [52] Kumar R. Adding binary search connections to ımprove densenet performance. 5th International Conference on Next Generation Computing Technologies . Dehradun: NGCT-2019;2019. SSRN: https://ssrn.com/abstract=3545071
  • [53] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE;2017. p. 4700-4708.
  • [54] Li X, Shen X, Zhou Y, Wang X, Li TQ. Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet). PloS One. 2020;15(5):e0232127.
  • [55] He K, Zhang X, Ren S, Sun J.. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision. USA: IEEE;2015.p. 1026-1034.
  • [56] Venkatesh G, Nurvitadhi E, Marr D. Accelerating deep convolutional networks using low-precision and sparsity. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans: IEEE;2017. p. 2861-2865.
  • [57] Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ. Residual deep convolutional neural network predicts MGMT methylation status. Journal of Digital Imaging. 2017;30(5):622-628.
  • [58] Fu Y, Aldrich C. Flotation froth image recognition with convolutional neural networks. Minerals Engineering.2019;132:183-190.
  • [59] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. 3th International Conference on Learning Representations. Toulon: ICLR;2016. p.1-13.
  • [60] Zavan FHDB, Bellon ORP, Silva L, Medioni GG. Benchmarking parts based face processing in-the-wild for gender recognition and head pose estimation. Pattern Recognition Letters.2019;123:104-110.
  • [61] Özyurt F, Sert E, Avcı D. An expert system for brain tumor detection: Fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Medical Hypotheses.2020;134:1-8.
  • [62] Pathak D, El-Sharkawy M. ReducedSqNet: A shallow architecture for CIFAR-10. In 2018 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas:IEEE;2018. p. 380-385.
  • [63] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 3th International Conference on Learning Representations. San Diego: ICLR;2014. p.1409.1556.
  • [64] Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In European conference on computer vision. Zurich: Springer;2014. p. 818-833.
  • [65] Demir U, Ünal G. Inpainting by deep autoencoders using an advisor network. 25th Signal Processing and Communications Applications Conference (SIU). Antalya: IEEE;2017. p. 1-4.
  • [66] Qassim H, Verma A, Feinzimer D. Compressed residual-VGG16 CNN model for big data places image recognition. 8th Annual Computing and Communication Workshop and Conference. Las Vegas: IEEE;2018. p. 169-175.
  • [67] Ruuska S, Hämäläinen W, Kajava S, Mughal M, Matilainen P, Mononen J. Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural Processes. 2018;148:56-62.
  • [68] Deng X, Liu Q, Deng Y, Mahadevan S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences. 2016;340:250-261.
  • [69] Peldek S, Becerikli Y. Recognition of human action in motion detected images with GMACA. Journal of the Faculty of Engineering and Architecture of Gazi University. 2019; 34(2):1025-1043.
  • [70] Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Information processing and management. 2009; 45(4): 427- 437.
  • [71] Ballabio D, Grisoni F, Todeschini R. Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems. 2018;174:33-44. (2018).

Elma Bitkisindeki Hastalıkların Yapay Zekâ Yöntemleri ile Tespiti ve Yapay Zekâ Yöntemlerinin Performanslarının Karşılaştırılması

Year 2020, , 194 - 210, 30.11.2020
https://doi.org/10.47933/ijeir.772514

Abstract

Yapay zekânın hayatımıza girmesiyle tarım alanında yapılan yapay zekâ uygulamaları oldukça popüler hale gelmiştir. Tarım alanında karşılaşılan bitki hastalıkları üzerinde durulması gereken önemli bir konu olup bu problemin çözümü için yapay zekâdan yardım alınmaktadır. Çalışmada, elma bitkisindeki uyuz, siyah çürük ve pas hastalığına sahip yaprakların yapay zekâ ile tespiti için evrişimsel sinir ağları (CNN) mimarileri kullanılmıştır. Çalışmada kullanılan CNN içerisinde yer alan AlexNet, DenseNet-121, ResNet-34, VGG16-BN ve Squeezenet1_0 mimarilerinin karışıklık matrisine göre performansları değerlendirilerek en iyi doğruluk, duyarlılık, özgüllük ve F-skor değerleri bulunmuştur. Sonuç olarak test veri seti için yapay zekâ ile elma bitkisindeki hastalık tespitinde en iyi modelin duyarlılık, özgüllük, doğruluk ve F-skor için sırasıyla %97,64, %99,54, %99,52, %98,62 değerleri ile ResNet-34 olduğu belirlenmiştir.

References

  • [1] Direk, M. Tarım tarihi ve deontoloji. 2th ed: 2012.
  • [2] Türker MMÖU, Akdemir B, Acar AÇAİ., Öztürk R, Eminoğlu MB. Tarımda dijital çağ. Türkiye Ziraat Mühendisliği IX. Teknik Kongresi Bildiriler Kitabı-1. Ankara: Ankara Üniversitesi Basın Yayın Müdürlüğü; 2020. p. 55-78.
  • [3] Tümenbatur A. (2019). Tarım-gıda bütünleşik tedarik zinciri tasarımı: domates ürünü uygulaması. İstanbul: Maltepe Üniversitesi; 2019.
  • [4] Hayaloğlu P. İklim değişikliğinin tarım sektörü ve ekonomik büyüme üzerindeki etkileri. Gümüşhane University Electronic Journal of the Institute of Social Science/Gümüşhane Üniversitesi Sosyal Bilimler Enstitüsü Elektronik Dergisi. 2018; 9(25):1-12.
  • [5] Özaydın G, Çelik Y. Tarım sektöründe arge ve inovasyon. Tarım Ekonomisi Dergisi. 2019; 25(1):1-13.
  • [6] Korkmaz F, Topkaya Ş, Yanar Y. Tokat Kabakgil üretim alanlarında enfeksiyon oluşturan virüslerin belirlenmesi. Gaziosmanpaşa Bilimsel Araştırma Dergisi. 2018;7(2):46-56.
  • [7] Eğilmez D, Boyraz N. Aksaray ili buğday ve arpa ekim alanlarındaki fungal hastalıkların son yıllardaki görünümü üzerine bir araştırma. Bahri Dağdaş Bitkisel Araştırma Dergisi. 2019; 8(2):322-335.
  • [8] Canhilal R, Tiryaki O. Kayseri ve civarında bitki koruma uygulamaları: problemler ve çözüm önerileri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2010; 26(2):88-101.
  • [9] Altas Z, Ozguven MM, Yanar Y. Determination of sugar beet leaf spot disease level (cercospora beticola sacc.) with ımage processing technique by using drone. Current Investigations in Agriculture and Current Research. 2018;5(3):621-631.
  • [10] Russell SJ, Norvig P. Artificial intelligence: a modern approach. 3rd ed. Pearson Education Inc:New Jersey;2016.
  • [11] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke and Vascular Neurology. 2017;2(4):230-243.
  • [12] Lu H, Li Y, Chen M, Kim H, Serikawa S. Brain intelligence: go beyond artificial intelligence. Mobile Networks and Applications. 2018;23(2):368-375.
  • [13] Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts, HJ. Artificial intelligence in radiology. Nature Reviews Cancer. 2018;18(8):500-510.
  • [14] El Naqa I, Haider MA, Giger ML, & Ten Haken RK. Artificial Intelligence: reshaping the practice of radiological sciences in the 21st century. The British Journal of Radiology. 2020; 93(1106): 1-15.
  • [15] Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017; 69(1):36-40.
  • [16] Çoban T. Sinemada yapay zeka. Ordu: Ordu Üniversitesi Sosyal Bilimler Enstitüsü; 2018.
  • [17] Warwick K, Shah H. Can machines think? a report on turing test experiments at the royal society. Journal of experimental & Theoretical artificial Intelligence. 2016;28(6):989-1007.
  • [18] Sindhuja R. Artificial intelligence and its applications in various fields. International Journal for Research Trends and Innovation. 2018;3(8)
  • [19] Sucu İ, Ataman E. Dijital evrenin yeni dünyası olarak yapay zeka ve her filmi üzerine bir çalışma. Yeni Medya Elektronik Dergisi. 2020; 4(1):40-52.
  • [20] Evans GW. Artificial intelligence: where we came from, where we are now, and where we are going. Victoria: University of Victoria; 2017.
  • [21] Jaakkola H. Henno J. Mäkelä J. Thalheim B. Artificial ıntelligence yesterday, today and tomorrow. 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2019. Opatija Croatia: IEEE;2019. p. 860-867.
  • [22] Odası ZM. Türkiye ziraat mühendisliği ıx. teknik kongresi bildiriler kitabı-1. 2020.
  • [23] Korkut UB. Göktürk ÖB. Yildiz O. Detection of plant diseases by machine learning. 26th Signal Processing and Communications Applications Conference, SIU 2018. Izmir Turkey: IEEE;2018. p. 1-4.
  • [24] Wicaksono G. Andryana S. Aplikasi pendeteksi penyakit pada daun tanaman apel dengan metode convolutional neural network. Journal of Information Technology and Computer Science. 2020; 5(1):9-16.
  • [25] Cruz A, Ampatzidis Y, Pierro R, Materazzi A, Panattoni A, De Bellis L, Luvisi A, et al. Detection of grapevine yellows symptoms in vitis vinifera L. with artificial intelligence. Computers and electronics in agriculture. 2019;157:63-76.
  • [26] Shruthi U. Nagaveni V. Raghavendra BK. A review on machine learning classification techniques for plant disease detection. 5th International Conference on Advanced Computing & Communication Systems, ICACCS 2019. Coimbatore, India: IEEE; 2019. p. 281-284.
  • [27] Fang T. Chen P. Zhang J. Wang B. Identification of apple leaf diseases based on convolutional neural network. In International Conference on Intelligent Computing 2019. Cham: Springer; 2019. p. 553-564.
  • [28] Baranwal S. Khandelwal S. Arora A. Deep learning convolutional neural network for apple leaves disease detection. Proceedings of International Conference on Sustainable Computing in Science, Technology and Management, SUSCOM 2019. India: SSRN;2019. p. 260-267.
  • [29] Alruwaili M, Abd El-Ghany S, Shehab A. An enhanced plant disease classifier model based on deep learning techniques. International Journal of Engineering and Advanced Techonology. 2019;9(1):7159-7164.
  • [30] Ferentinos KP. Deep learning models for plant disease detection and diagnosis. Computers and Electronics in Agriculture. 2018;145:311-318.
  • [31] Khitthuk C. Srikaew A. Attakitmongcol K. Kumsawat P. Plant Leaf Disease Diagnosis from Color Imagery Using Co-Occurrence Matrix and Artificial Intelligence System. International Electrical Engineering Congress, İEECON 2018. Thailand: IEEE; 2019. p. 1-4.
  • [32] Singh V, Misra AK. Detection of plant leaf diseases using image segmentation and soft computing techniques. Information processing in Agriculture. 2017;4(1):41-49.
  • [33] Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience. 2016
  • [34] Nachtigall LG. Araujo RM. Nachtigall GR. Classification of apple tree disorders using convolutional neural Networks. 28th International Conference on Tools with Artificial Intelligence, ICTAI 2016. San Jose, CA, USA: IEEE;2016. p. 472-476.
  • [35] Acar E. Yapay zeka yöntemleriyle bitki yaprak imgelerinde pas hastalıklarının tespiti [yüksek lisans tezi]. Diyarbakır: Dicle Üniversitesi; 2015
  • [36] Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep learning for health informatics. journal of biomedical and health informatics, IEEE. 2016;21(1):4-21.
  • [37] Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. Elseiver. 2015;61:85-117.
  • [38] Pan SJ, Yang Q. A survey on transfer learning. Transactions on knowledge and data engineering, IEEE. 2009;22(10):1345-1359.
  • [39] Kızrak MA, Bolat B. Derin öğrenme ile kalabalık analizi üzerine detaylı bir araştırma. Bilişim Teknolojileri Dergisi, 2018;11(3):263-286.
  • [40] Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Chen T, et al. Recent advances in convolutional neural networks. Pattern Recognition. 2018;77,:354-377.
  • [41] Min S, Lee B, Yoon S. Deep learning in bioinformatics. Briefings in bioinformatics. 2017;18(5):851-869.
  • [42] Milletari F. Navab N. Ahmadi SA. V-net: Fully convolutional neural networks for volumetric medical image segmentation. Fourth International Conference on 3D Vision, 3DV 2016. ABD: IEEE; 2016. p. 565-571.
  • [43] Hanbay K. Hyperspectral image classification using convolutional neural network and two-dimensional complex Gabor transform. Journal of the faculty of engıneerıng and archıtecture of gazı unıversıty. 2020;35(1):443-456.
  • [44] Niepert M. Ahmed M. Kutzkov K. Learning convolutional neural networks for graphs. In International conference on machine learning. Germany:2016. p. 2014-2023.
  • [45] Kurt F. Evrişimli Sinir Ağlarında Hiper Parametrelerin Etkisinin İncelenmesi [yüksek lisans tezi]. Ankara:Hacettepe Üniversitesi; 2018
  • [46] Lu S, Lu Z, Zhang YD. Pathological brain detection based on AlexNet and transfer learning. Journal of computational science. 2019;30:41-47.
  • [47] Krizhevsky A. Sutskever I. Hinton GE. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. Kanada:2012. p. 1097-1105.
  • [48] Özgür A, Fatih NAR. Derin ögrenme yöntemleri kullanarak ekin ile yabancı otların birbirinden ayırt edilmesi. International Conference on Computer Technologies and Applications in Food and Agriculture. Konya: ICCTAFA;2019. p. 76-89
  • [49] Ballester P, Araujo RM. On the performance of GoogLeNet and AlexNet applied to sketches. In Thirtieth AAAI Conference on Artificial Intelligence. Phoenix: AAAI;2016. p. 1124-1128.
  • [50] Xiao L, Yan Q, Deng S. Scene classification with improved AlexNet model. In 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). Nanjing:IEEE;2017. p. 1-6.
  • [51] Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, et al. The history began from alexnet: A comprehensive survey on deep learning approaches. Cornell University Computer Vision and Pattern Recognition. 2018; 1: 1-39.
  • [52] Kumar R. Adding binary search connections to ımprove densenet performance. 5th International Conference on Next Generation Computing Technologies . Dehradun: NGCT-2019;2019. SSRN: https://ssrn.com/abstract=3545071
  • [53] Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE;2017. p. 4700-4708.
  • [54] Li X, Shen X, Zhou Y, Wang X, Li TQ. Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet). PloS One. 2020;15(5):e0232127.
  • [55] He K, Zhang X, Ren S, Sun J.. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision. USA: IEEE;2015.p. 1026-1034.
  • [56] Venkatesh G, Nurvitadhi E, Marr D. Accelerating deep convolutional networks using low-precision and sparsity. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans: IEEE;2017. p. 2861-2865.
  • [57] Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ. Residual deep convolutional neural network predicts MGMT methylation status. Journal of Digital Imaging. 2017;30(5):622-628.
  • [58] Fu Y, Aldrich C. Flotation froth image recognition with convolutional neural networks. Minerals Engineering.2019;132:183-190.
  • [59] Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size. 3th International Conference on Learning Representations. Toulon: ICLR;2016. p.1-13.
  • [60] Zavan FHDB, Bellon ORP, Silva L, Medioni GG. Benchmarking parts based face processing in-the-wild for gender recognition and head pose estimation. Pattern Recognition Letters.2019;123:104-110.
  • [61] Özyurt F, Sert E, Avcı D. An expert system for brain tumor detection: Fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Medical Hypotheses.2020;134:1-8.
  • [62] Pathak D, El-Sharkawy M. ReducedSqNet: A shallow architecture for CIFAR-10. In 2018 International Conference on Computational Science and Computational Intelligence (CSCI). Las Vegas:IEEE;2018. p. 380-385.
  • [63] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. 3th International Conference on Learning Representations. San Diego: ICLR;2014. p.1409.1556.
  • [64] Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In European conference on computer vision. Zurich: Springer;2014. p. 818-833.
  • [65] Demir U, Ünal G. Inpainting by deep autoencoders using an advisor network. 25th Signal Processing and Communications Applications Conference (SIU). Antalya: IEEE;2017. p. 1-4.
  • [66] Qassim H, Verma A, Feinzimer D. Compressed residual-VGG16 CNN model for big data places image recognition. 8th Annual Computing and Communication Workshop and Conference. Las Vegas: IEEE;2018. p. 169-175.
  • [67] Ruuska S, Hämäläinen W, Kajava S, Mughal M, Matilainen P, Mononen J. Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle. Behavioural Processes. 2018;148:56-62.
  • [68] Deng X, Liu Q, Deng Y, Mahadevan S. An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information Sciences. 2016;340:250-261.
  • [69] Peldek S, Becerikli Y. Recognition of human action in motion detected images with GMACA. Journal of the Faculty of Engineering and Architecture of Gazi University. 2019; 34(2):1025-1043.
  • [70] Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Information processing and management. 2009; 45(4): 427- 437.
  • [71] Ballabio D, Grisoni F, Todeschini R. Multivariate comparison of classification performance measures. Chemometrics and Intelligent Laboratory Systems. 2018;174:33-44. (2018).
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Bekir Aksoy 0000-0001-8052-9411

Helin Diyar Halis 0000-0002-7818-0393

Osamah Khaled Musleh Salman 0000-0001-6526-4793

Publication Date November 30, 2020
Acceptance Date August 4, 2020
Published in Issue Year 2020

Cite

APA Aksoy, B., Halis, H. D., & Salman, O. K. M. (2020). Elma Bitkisindeki Hastalıkların Yapay Zekâ Yöntemleri ile Tespiti ve Yapay Zekâ Yöntemlerinin Performanslarının Karşılaştırılması. International Journal of Engineering and Innovative Research, 2(3), 194-210. https://doi.org/10.47933/ijeir.772514

88x31.png

This work is licensed under a Creative Commons Attribution 4.0 International License