The object of the present paper is to study generalized complex space forms satisfying curvature identities named Walker type identities. Also It is proved that the difference tensor R. ̃ – ̃.R and the Tachibana tensor Q(S, ̃) of any generalized complex space form M(f1, f2) of dimensional m ≥ 4 are linearly dependent at every point of M(f1, f2). Finally generalized complex space forms are studied under the condition R.R – Q(S,R) = L Q(g , ̃).
Z. Olszak, “The existance of generalized complex space form”, Israel.J.Math., vol.65, pp.214- 218, 1989.
U.C. De and A. Sarkar,“On the projective curvature tensor of generalized Sasakian space forms”, Quaestines Mathematicae, vol.33, pp.245-252, 2010.
Sarkar. A. and De. U.C, “Some curvature properties of generalized Sasakian space forms”, Lobachevskii journal of mathematics, Vol.33, no.1, pp.22-27, 2012.
Venkatesha and B. Sumangala, “On M-Projective curvature tensor of a generalized Sasakian space form”, Acta Math. Univ. Comenian, Vol.82(2) pp.209-217, 2013.
M. Atceken , “On generalized Saskian space forms satisfying certain conditions on the concircular curvature tensor”, Bulletin of Mathemaical analysis and applications, vol.6(1), pp.1-8, 2014.
S. Yadav, D.L. Suthar and A. K. Srivastava , “Some results on M(f1, f2, f3) 2n+1-manifolds”, Int. J. Pure Appl. Math., vol.70(3), pp.415-423, 2011.
H. G. Nagaraja and Savithri Shashidhar, “On generalized Sasakian space forms”, International Scholarly Research Network Geometry, 2012.
M. C. Bharathi and C. S. Bagewadi, “On generalized complex space forms”, IOSR Journal of Mathematics, vol.10, pp. 44-46, 2014.
K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.
F. Tricerri and L. Vanhecke “Curvature tensors on almost Hermitian manifolds”, Trans. Amer. Math. Soc., vol. 267, pp.365-398, 1981.
U.C. De and G.C. Ghosh “On generalized Quasi-Einstein manifolds” Kyungpoole Math.J., vol.44, pp. 607-615, 2004.
Z.I. Szabó, “Structure theorems on Riemannian spaces satisfying R(X,Y).R=0”, I. The local version, J. Differential Geom., vol.17, pp.531-582, 1982.
R. Deszcz, “On pseudosymmetric spaces”, Bull. Soc. Math. Belg. Ser., Vol. A44, pp.1-34, 1992.
R. Deszcz and Ş. Yaprak, “Curvature properties of certain pseudosymmetric manifolds”,Publ. Math. Debr., vol.45, pp.334-345, 1994.
R. Deszcz and M. Hotlos , “Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor”, Prace. Nauk. Pol. Szczec., vol. 11, pp. 23-34, 1989.
M. Belkhelfa, R. Deszcz, M, Głogowska, M. Hotlos, D. Kowalczyk and L. Verstraelen, “ A Review on pseudosymmetry type manifolds”, Banach Center Publ., vol.57, pp. 179-194, 2002.
R. Deszcz, J. Deprez and L. Verstraelen, “Examples of pseudo-symmetric conformally flat warped products”, Chinese J. Math., vol. 17, pp.51-65, 1989.
Z. Olszak, “The existance of generalized complex space form”, Israel.J.Math., vol.65, pp.214- 218, 1989.
U.C. De and A. Sarkar,“On the projective curvature tensor of generalized Sasakian space forms”, Quaestines Mathematicae, vol.33, pp.245-252, 2010.
Sarkar. A. and De. U.C, “Some curvature properties of generalized Sasakian space forms”, Lobachevskii journal of mathematics, Vol.33, no.1, pp.22-27, 2012.
Venkatesha and B. Sumangala, “On M-Projective curvature tensor of a generalized Sasakian space form”, Acta Math. Univ. Comenian, Vol.82(2) pp.209-217, 2013.
M. Atceken , “On generalized Saskian space forms satisfying certain conditions on the concircular curvature tensor”, Bulletin of Mathemaical analysis and applications, vol.6(1), pp.1-8, 2014.
S. Yadav, D.L. Suthar and A. K. Srivastava , “Some results on M(f1, f2, f3) 2n+1-manifolds”, Int. J. Pure Appl. Math., vol.70(3), pp.415-423, 2011.
H. G. Nagaraja and Savithri Shashidhar, “On generalized Sasakian space forms”, International Scholarly Research Network Geometry, 2012.
M. C. Bharathi and C. S. Bagewadi, “On generalized complex space forms”, IOSR Journal of Mathematics, vol.10, pp. 44-46, 2014.
K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965.
F. Tricerri and L. Vanhecke “Curvature tensors on almost Hermitian manifolds”, Trans. Amer. Math. Soc., vol. 267, pp.365-398, 1981.
U.C. De and G.C. Ghosh “On generalized Quasi-Einstein manifolds” Kyungpoole Math.J., vol.44, pp. 607-615, 2004.
Z.I. Szabó, “Structure theorems on Riemannian spaces satisfying R(X,Y).R=0”, I. The local version, J. Differential Geom., vol.17, pp.531-582, 1982.
R. Deszcz, “On pseudosymmetric spaces”, Bull. Soc. Math. Belg. Ser., Vol. A44, pp.1-34, 1992.
R. Deszcz and Ş. Yaprak, “Curvature properties of certain pseudosymmetric manifolds”,Publ. Math. Debr., vol.45, pp.334-345, 1994.
R. Deszcz and M. Hotlos , “Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor”, Prace. Nauk. Pol. Szczec., vol. 11, pp. 23-34, 1989.
M. Belkhelfa, R. Deszcz, M, Głogowska, M. Hotlos, D. Kowalczyk and L. Verstraelen, “ A Review on pseudosymmetry type manifolds”, Banach Center Publ., vol.57, pp. 179-194, 2002.
R. Deszcz, J. Deprez and L. Verstraelen, “Examples of pseudo-symmetric conformally flat warped products”, Chinese J. Math., vol. 17, pp.51-65, 1989.
Mutlu, P. (2019). Some Curvature Properties of Generalized Complex Space Forms. International Journal of Engineering and Natural Sciences, 2(1).
AMA
Mutlu P. Some Curvature Properties of Generalized Complex Space Forms. IJENS. April 2019;2(1).
Chicago
Mutlu, Pegah. “Some Curvature Properties of Generalized Complex Space Forms”. International Journal of Engineering and Natural Sciences 2, no. 1 (April 2019).
EndNote
Mutlu P (April 1, 2019) Some Curvature Properties of Generalized Complex Space Forms. International Journal of Engineering and Natural Sciences 2 1
IEEE
P. Mutlu, “Some Curvature Properties of Generalized Complex Space Forms”, IJENS, vol. 2, no. 1, 2019.
ISNAD
Mutlu, Pegah. “Some Curvature Properties of Generalized Complex Space Forms”. International Journal of Engineering and Natural Sciences 2/1 (April 2019).
JAMA
Mutlu P. Some Curvature Properties of Generalized Complex Space Forms. IJENS. 2019;2.
MLA
Mutlu, Pegah. “Some Curvature Properties of Generalized Complex Space Forms”. International Journal of Engineering and Natural Sciences, vol. 2, no. 1, 2019.
Vancouver
Mutlu P. Some Curvature Properties of Generalized Complex Space Forms. IJENS. 2019;2(1).