Research Article
BibTex RIS Cite

Some Curvature Properties of Generalized Complex Space Forms

Year 2019, Volume: 2 Issue: 1, 0 - 0, 30.04.2019

Abstract

The object of the present paper is to study generalized complex space forms satisfying curvature identities named Walker type identities. Also It is proved that the difference tensor R. ̃ – ̃.R and the Tachibana tensor Q(S, ̃) of any generalized complex space form M(f1, f2) of dimensional m ≥ 4 are linearly dependent at every point of M(f1, f2). Finally generalized complex space forms are studied under the condition R.R – Q(S,R) = L Q(g , ̃).

References

  • Z. Olszak, “The existance of generalized complex space form”, Israel.J.Math., vol.65, pp.214- 218, 1989. U.C. De and A. Sarkar,“On the projective curvature tensor of generalized Sasakian space forms”, Quaestines Mathematicae, vol.33, pp.245-252, 2010. Sarkar. A. and De. U.C, “Some curvature properties of generalized Sasakian space forms”, Lobachevskii journal of mathematics, Vol.33, no.1, pp.22-27, 2012. Venkatesha and B. Sumangala, “On M-Projective curvature tensor of a generalized Sasakian space form”, Acta Math. Univ. Comenian, Vol.82(2) pp.209-217, 2013. M. Atceken , “On generalized Saskian space forms satisfying certain conditions on the concircular curvature tensor”, Bulletin of Mathemaical analysis and applications, vol.6(1), pp.1-8, 2014. S. Yadav, D.L. Suthar and A. K. Srivastava , “Some results on M(f1, f2, f3) 2n+1-manifolds”, Int. J. Pure Appl. Math., vol.70(3), pp.415-423, 2011. H. G. Nagaraja and Savithri Shashidhar, “On generalized Sasakian space forms”, International Scholarly Research Network Geometry, 2012. M. C. Bharathi and C. S. Bagewadi, “On generalized complex space forms”, IOSR Journal of Mathematics, vol.10, pp. 44-46, 2014. K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965. F. Tricerri and L. Vanhecke “Curvature tensors on almost Hermitian manifolds”, Trans. Amer. Math. Soc., vol. 267, pp.365-398, 1981. U.C. De and G.C. Ghosh “On generalized Quasi-Einstein manifolds” Kyungpoole Math.J., vol.44, pp. 607-615, 2004. Z.I. Szabó, “Structure theorems on Riemannian spaces satisfying R(X,Y).R=0”, I. The local version, J. Differential Geom., vol.17, pp.531-582, 1982. R. Deszcz, “On pseudosymmetric spaces”, Bull. Soc. Math. Belg. Ser., Vol. A44, pp.1-34, 1992. R. Deszcz and Ş. Yaprak, “Curvature properties of certain pseudosymmetric manifolds”,Publ. Math. Debr., vol.45, pp.334-345, 1994. R. Deszcz and M. Hotlos , “Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor”, Prace. Nauk. Pol. Szczec., vol. 11, pp. 23-34, 1989. M. Belkhelfa, R. Deszcz, M, Głogowska, M. Hotlos, D. Kowalczyk and L. Verstraelen, “ A Review on pseudosymmetry type manifolds”, Banach Center Publ., vol.57, pp. 179-194, 2002. R. Deszcz, J. Deprez and L. Verstraelen, “Examples of pseudo-symmetric conformally flat warped products”, Chinese J. Math., vol. 17, pp.51-65, 1989.
Year 2019, Volume: 2 Issue: 1, 0 - 0, 30.04.2019

Abstract

References

  • Z. Olszak, “The existance of generalized complex space form”, Israel.J.Math., vol.65, pp.214- 218, 1989. U.C. De and A. Sarkar,“On the projective curvature tensor of generalized Sasakian space forms”, Quaestines Mathematicae, vol.33, pp.245-252, 2010. Sarkar. A. and De. U.C, “Some curvature properties of generalized Sasakian space forms”, Lobachevskii journal of mathematics, Vol.33, no.1, pp.22-27, 2012. Venkatesha and B. Sumangala, “On M-Projective curvature tensor of a generalized Sasakian space form”, Acta Math. Univ. Comenian, Vol.82(2) pp.209-217, 2013. M. Atceken , “On generalized Saskian space forms satisfying certain conditions on the concircular curvature tensor”, Bulletin of Mathemaical analysis and applications, vol.6(1), pp.1-8, 2014. S. Yadav, D.L. Suthar and A. K. Srivastava , “Some results on M(f1, f2, f3) 2n+1-manifolds”, Int. J. Pure Appl. Math., vol.70(3), pp.415-423, 2011. H. G. Nagaraja and Savithri Shashidhar, “On generalized Sasakian space forms”, International Scholarly Research Network Geometry, 2012. M. C. Bharathi and C. S. Bagewadi, “On generalized complex space forms”, IOSR Journal of Mathematics, vol.10, pp. 44-46, 2014. K. Yano, Differential geometry on complex and almost complex spaces, Pergamon Press, 1965. F. Tricerri and L. Vanhecke “Curvature tensors on almost Hermitian manifolds”, Trans. Amer. Math. Soc., vol. 267, pp.365-398, 1981. U.C. De and G.C. Ghosh “On generalized Quasi-Einstein manifolds” Kyungpoole Math.J., vol.44, pp. 607-615, 2004. Z.I. Szabó, “Structure theorems on Riemannian spaces satisfying R(X,Y).R=0”, I. The local version, J. Differential Geom., vol.17, pp.531-582, 1982. R. Deszcz, “On pseudosymmetric spaces”, Bull. Soc. Math. Belg. Ser., Vol. A44, pp.1-34, 1992. R. Deszcz and Ş. Yaprak, “Curvature properties of certain pseudosymmetric manifolds”,Publ. Math. Debr., vol.45, pp.334-345, 1994. R. Deszcz and M. Hotlos , “Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor”, Prace. Nauk. Pol. Szczec., vol. 11, pp. 23-34, 1989. M. Belkhelfa, R. Deszcz, M, Głogowska, M. Hotlos, D. Kowalczyk and L. Verstraelen, “ A Review on pseudosymmetry type manifolds”, Banach Center Publ., vol.57, pp. 179-194, 2002. R. Deszcz, J. Deprez and L. Verstraelen, “Examples of pseudo-symmetric conformally flat warped products”, Chinese J. Math., vol. 17, pp.51-65, 1989.
There are 1 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Pegah Mutlu This is me

Publication Date April 30, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Mutlu, P. (2019). Some Curvature Properties of Generalized Complex Space Forms. International Journal of Engineering and Natural Sciences, 2(1).
AMA Mutlu P. Some Curvature Properties of Generalized Complex Space Forms. IJENS. April 2019;2(1).
Chicago Mutlu, Pegah. “Some Curvature Properties of Generalized Complex Space Forms”. International Journal of Engineering and Natural Sciences 2, no. 1 (April 2019).
EndNote Mutlu P (April 1, 2019) Some Curvature Properties of Generalized Complex Space Forms. International Journal of Engineering and Natural Sciences 2 1
IEEE P. Mutlu, “Some Curvature Properties of Generalized Complex Space Forms”, IJENS, vol. 2, no. 1, 2019.
ISNAD Mutlu, Pegah. “Some Curvature Properties of Generalized Complex Space Forms”. International Journal of Engineering and Natural Sciences 2/1 (April 2019).
JAMA Mutlu P. Some Curvature Properties of Generalized Complex Space Forms. IJENS. 2019;2.
MLA Mutlu, Pegah. “Some Curvature Properties of Generalized Complex Space Forms”. International Journal of Engineering and Natural Sciences, vol. 2, no. 1, 2019.
Vancouver Mutlu P. Some Curvature Properties of Generalized Complex Space Forms. IJENS. 2019;2(1).