Araştırma Makalesi
BibTex RIS Kaynak Göster

Satellite-Based Monitoring of Hydrological Trends in Lake Burdur: NDWI and Linear Regression Approach

Yıl 2025, Cilt: 9 Sayı: 2, 109 - 119, 31.12.2025

Öz

This study presents a comprehensive spatiotemporal analysis of surface water changes in Lake Burdur, a large endorheic lake located in southwestern Turkey, by employing multi-temporal satellite imagery and geospatial techniques over a 20-year period (2004–2024). Landsat imagery from 2004, 2014, and 2024 was utilized to delineate water surface areas through the application of the Normalized Difference Water Index (NDWI), a spectral index effective in distinguishing water bodies from terrestrial features. All satellite data underwent radiometric and atmospheric correction to ensure inter-annual comparability and eliminate seasonal or atmospheric variability. NDWI thresholding enabled precise classification of water pixels, allowing for the quantification of lake surface area at each time point. The results reveal a consistent and alarming decrease in Lake Burdur’s surface water extent, with a total loss exceeding 26.32% compared to 2004 levels. To statistically characterize this downward trend, linear regression analysis was applied to the calculated water surface areas, revealing a significant negative correlation between time and surface area. This sustained decline is attributed to a combination of climatic factors such as reduced precipitation and increased evaporation, as well as anthropogenic influences including excessive groundwater abstraction and land use changes in the lake’s drainage basin. The findings underscore the increasing vulnerability of closed-basin lakes in semi-arid regions to hydrological stress. This research highlights the efficacy of remote sensing and NDWI-based analysis in long-term lake monitoring and provides critical insights for regional water management and climate adaptation strategies.

Kaynakça

  • [1] Lehner, B., Döll, P. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 296(1–4), 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028.
  • [2] Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., Striegl, R.G., McDowell, W.H, Kortelainen P., Caraco, N.F., Melack, J.M., Middelburg, J.J. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388.
  • [3] Williamson, C.E., Saros, J.E., Vincent, W.F., Smol, J.P. 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography, 54(6), 2273–2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273.
  • [4] Adrian, R., M. O'Reill, Catherine., Zagarese, H., Baines, S., Hessen, Dag., Keller, W., Livingstone, D.M., Sommaruga, R., Straile, D., Gonk, E.V., Weyhenmeyer, G.A., Winder, Monika. 2009. Lakes as sentinels of climate change. Limnology and Oceanography, 54(6), 2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283.
  • [5] Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C. K., Ke, C. 2020. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208, 103269. https://doi.org/10.1016/j.earscirev.2018.11.001.
  • [6] Messager, M.L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7, 13603. https://doi.org/10.1038/ncomms13603.
  • [7] Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584.
  • [8] Cooley, S.W., Smith, L.C., Ryan, J.C., Pitcher, L.H., Pavelsky, T.M. 2019. Arctic‐Boreal Lake dynamics revealed using CubeSat imagery. Geophysical Research Letters, 46(4), 2111-2120. https://doi.org/10.1029/2018GL081584. [9] Schneider, P., Flörke, M., Eisner, S., Voss, F. 2019. Large scale water quality simulation in the context of global change. Hydrological Sciences Journal, 64(3), 352–369.
  • [10] Donchyts, G., Winsemius, H., Baart, F., Dahm, R., Schellekens, J., Gorelick, N., Schmeier, S. 2022. High-resolution surface water dynamics in Earth’s small and medium-sized reservoirs. Scientific reports, 12(1), 13776. https://doi.org/10.1038/s41598-022-20467-2. [11] Feng, M., Sexton, J.O., Channan, S., Townshend, J.R. 2015. A global, high-resolution (30 m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. International Journal of Digital Earth, 9(2), 113–133. https://doi.org/10.1080/17538947.2015.1026420.
  • [12] McFeeters, S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714.
  • [13] Kadıoğlu, M. 2012. Climate change and water resources in Turkey. In: F. T. Yıldız (Ed.), Climate Change in Turkey (pp. 89–104). Istanbul Policy Center.
  • [14] Örçen, B. 2023. Analysis of Hydrological Drought in the Turkish Lakes Region with Satellite Remote Sensing. Advances in Geomatics, 1(1), 68-84. https://doi.org/10.5281/zenodo.10202330.
  • [15] Akdeniz, H.B., Sag, N.S., Inam, S. 2023. Analysis of land use/land cover changes and prediction of future changes with land change modeler: Case of Belek, Turkey. Environmental Monitoring and Assessment, 195(1), 135. https://doi.org/10.1007/s10661-022-10746-w.
  • [16] Green, A.J., Fox, A.D., Hilton, G., Hughes, B., Yarar, M., Salathé, T. 1996. Threats to Burdur Lake ecosystem, Turkey and its waterbirds, particularly the white-headed duck Oxyura leucocephala. Biological Conservation, 76(3), 241-252. https://doi.org/10.1016/0006-3207(95)00125-5.
  • [17] Dinç, G. 2024. A new approach to three-dimensional monitoring of surface changes in lakes: application of three-way data analysis model in Lake Burdur, Turkey. Environmental Monitoring and Assessment, 196(11), 1088. https://doi.org/10.1007/s10661-024-13250-5.
  • [18] Efe, R., Soykan, A., Sönmez, S. 2018. Human-induced hydrological changes and their ecological impacts in the Burdur Basin. Turkish Geographical Review, 70, 79–97.
  • [19] Kaya, Y., Şanlı, F.B., Abdikan, S. 2023. Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environmental Science and Pollution Research, 30(55), 117729-117747. https://doi.org/10.1007/s11356-023-30369-z.
  • [20] Dervişoglu, A., Yağmur, N., Fıratlı, E., Musaoğlu, N., Tanık, A. 2022. Spatio-temporal assessment of the shrinking Lake Burdur, Turkey. International Journal of Environment and Geoinformatics, 9(2), 169-176.
  • [21] Sener, E., Davraz, A., Sener, S. 2010. Investigation of Akşehir and Eber Lakes (SW Turkey) coastline change with multitemporal satellie images. Water resources management, 24(4), 727-745.
  • [22] Beklioğlu, M., Romo, S., Kagalou, I., Quintana, X., Bécares, E. 2007. State of the art in the functioning of shallow Mediterranean lakes: Workshop conclusions. Hydrobiologia, 584, 317–326. https://doi.org/10.1007/s10750-007-0577-x.
  • [23] Külköylüoğlu, O., Yağcı, A., Erbatur, İ., Yağcı, M.A., Bulut, C., Çınar, Ş. 2023. Effects of water quality changes on the Ostracoda (Crustacea) species diversity and seasonal occurrence patterns in Lake Eğirdir (Isparta, Turkey). Biologia, 78(3), 755-769.
  • [24] Kashima, K. 2002. Environmental and climatic changes during the last 20,000 years at Lake Tuz, central Turkey. Catena, 48(1-2), 3-20.
  • [25] Özpolat, E., Demir, T. 2019. The spatiotemporal shoreline dynamics of a delta under natural and anthropogenic conditions from 1950 to 2018: A dramatic case from the Eastern Mediterranean. Ocean & Coastal Management, 180, 104910.
  • [26] Ozturk, D., Sesli, F.A. 2015. Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean & Coastal Management, 118, 290-308.
  • [27] Akdeniz, H.B., İnam, Ş. 2023. Spatio-temporal analysis of shoreline changes and future forecasting: the case of Küçük Menderes Delta, Türkiye. Journal of Coastal Conservation, 27(4), 34. [28] Yilmaz, A.G., Imteaz, M.A. 2014. Climate change and water resources in Turkey: a review. International Journal of Water, 8(3), 299-313.
  • [29] Dervişoğlu, A., Yağmur, N., Fıratlı, E., Musaoğlu, N., Tanık, A. 2022. Spatio-temporal assessment of the shrinking Lake Burdur, Turkey. International Journal of Environment and Geoinformatics, 9(2), 169–176.

NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü'nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi

Yıl 2025, Cilt: 9 Sayı: 2, 109 - 119, 31.12.2025

Öz

Bu çalışma, Türkiye’nin güneybatısında yer alan büyük bir endoreik (kapalı havza) göl olan Burdur Gölü’nde, 20 yıllık bir zaman diliminde (2004–2024) meydana gelen su yüzeyi değişimlerini çok zamanlı uydu görüntüleri ve CBS (coğrafi bilgi sistemleri) teknikleri kullanarak kapsamlı bir şekilde analiz etmektedir. Çalışmada 2004, 2014 ve 2024 yıllarına ait Landsat görüntüleri kullanılarak, kara-su ayrımını etkili biçimde gerçekleştiren Normalized Difference Water Index (NDWI) yöntemiyle göl yüzey alanı sınırları belirlenmiştir. Tüm uydu verileri, yıllar arası karşılaştırmayı mümkün kılmak amacıyla radyometrik ve atmosferik düzeltmeye tabi tutulmuştur. NDWI eşikleme yöntemiyle su pikselleri hassas şekilde sınıflandırılmış ve her yıl için gölün yüzey alanı hesaplanmıştır. Elde edilen sonuçlar, Burdur Gölü’nün su yüzeyinde 2004 yılına kıyasla %26,32’nin üzerinde kayıp yaşandığını ve bu kaybın süreklilik gösterdiğini ortaya koymuştur. Yıllara göre hesaplanan yüzey alanları üzerinde uygulanan lineer regresyon analizi, gölde zamanla meydana gelen küçülmenin istatistiksel olarak anlamlı bir düşüş eğilimi sergilediğini doğrulamıştır. Bu sürekli azalış, azalan yağışlar ve artan buharlaşma gibi iklimsel etkenlerin yanı sıra, aşırı yeraltı suyu kullanımı ve havza içindeki arazi kullanım değişiklikleri gibi insan kaynaklı baskılarla ilişkilendirilmiştir. Araştırma, yarı kurak bölgelerdeki kapalı havza göllerinin artan hidrolojik stres karşısındaki kırılganlığını vurgularken, NDWI temelli uzaktan algılama analizlerinin uzun vadeli göl izlemelerinde etkinliğini ve bölgesel su yönetimi stratejilerine katkı potansiyelini ortaya koymaktadır.

Kaynakça

  • [1] Lehner, B., Döll, P. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 296(1–4), 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028.
  • [2] Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., Striegl, R.G., McDowell, W.H, Kortelainen P., Caraco, N.F., Melack, J.M., Middelburg, J.J. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388.
  • [3] Williamson, C.E., Saros, J.E., Vincent, W.F., Smol, J.P. 2009. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnology and Oceanography, 54(6), 2273–2282. https://doi.org/10.4319/lo.2009.54.6_part_2.2273.
  • [4] Adrian, R., M. O'Reill, Catherine., Zagarese, H., Baines, S., Hessen, Dag., Keller, W., Livingstone, D.M., Sommaruga, R., Straile, D., Gonk, E.V., Weyhenmeyer, G.A., Winder, Monika. 2009. Lakes as sentinels of climate change. Limnology and Oceanography, 54(6), 2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283.
  • [5] Zhang, G., Yao, T., Xie, H., Yang, K., Zhu, L., Shum, C. K., Ke, C. 2020. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth-Science Reviews, 208, 103269. https://doi.org/10.1016/j.earscirev.2018.11.001.
  • [6] Messager, M.L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O. 2016. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications, 7, 13603. https://doi.org/10.1038/ncomms13603.
  • [7] Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584.
  • [8] Cooley, S.W., Smith, L.C., Ryan, J.C., Pitcher, L.H., Pavelsky, T.M. 2019. Arctic‐Boreal Lake dynamics revealed using CubeSat imagery. Geophysical Research Letters, 46(4), 2111-2120. https://doi.org/10.1029/2018GL081584. [9] Schneider, P., Flörke, M., Eisner, S., Voss, F. 2019. Large scale water quality simulation in the context of global change. Hydrological Sciences Journal, 64(3), 352–369.
  • [10] Donchyts, G., Winsemius, H., Baart, F., Dahm, R., Schellekens, J., Gorelick, N., Schmeier, S. 2022. High-resolution surface water dynamics in Earth’s small and medium-sized reservoirs. Scientific reports, 12(1), 13776. https://doi.org/10.1038/s41598-022-20467-2. [11] Feng, M., Sexton, J.O., Channan, S., Townshend, J.R. 2015. A global, high-resolution (30 m) inland water body dataset for 2000: First results of a topographic–spectral classification algorithm. International Journal of Digital Earth, 9(2), 113–133. https://doi.org/10.1080/17538947.2015.1026420.
  • [12] McFeeters, S.K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714.
  • [13] Kadıoğlu, M. 2012. Climate change and water resources in Turkey. In: F. T. Yıldız (Ed.), Climate Change in Turkey (pp. 89–104). Istanbul Policy Center.
  • [14] Örçen, B. 2023. Analysis of Hydrological Drought in the Turkish Lakes Region with Satellite Remote Sensing. Advances in Geomatics, 1(1), 68-84. https://doi.org/10.5281/zenodo.10202330.
  • [15] Akdeniz, H.B., Sag, N.S., Inam, S. 2023. Analysis of land use/land cover changes and prediction of future changes with land change modeler: Case of Belek, Turkey. Environmental Monitoring and Assessment, 195(1), 135. https://doi.org/10.1007/s10661-022-10746-w.
  • [16] Green, A.J., Fox, A.D., Hilton, G., Hughes, B., Yarar, M., Salathé, T. 1996. Threats to Burdur Lake ecosystem, Turkey and its waterbirds, particularly the white-headed duck Oxyura leucocephala. Biological Conservation, 76(3), 241-252. https://doi.org/10.1016/0006-3207(95)00125-5.
  • [17] Dinç, G. 2024. A new approach to three-dimensional monitoring of surface changes in lakes: application of three-way data analysis model in Lake Burdur, Turkey. Environmental Monitoring and Assessment, 196(11), 1088. https://doi.org/10.1007/s10661-024-13250-5.
  • [18] Efe, R., Soykan, A., Sönmez, S. 2018. Human-induced hydrological changes and their ecological impacts in the Burdur Basin. Turkish Geographical Review, 70, 79–97.
  • [19] Kaya, Y., Şanlı, F.B., Abdikan, S. 2023. Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environmental Science and Pollution Research, 30(55), 117729-117747. https://doi.org/10.1007/s11356-023-30369-z.
  • [20] Dervişoglu, A., Yağmur, N., Fıratlı, E., Musaoğlu, N., Tanık, A. 2022. Spatio-temporal assessment of the shrinking Lake Burdur, Turkey. International Journal of Environment and Geoinformatics, 9(2), 169-176.
  • [21] Sener, E., Davraz, A., Sener, S. 2010. Investigation of Akşehir and Eber Lakes (SW Turkey) coastline change with multitemporal satellie images. Water resources management, 24(4), 727-745.
  • [22] Beklioğlu, M., Romo, S., Kagalou, I., Quintana, X., Bécares, E. 2007. State of the art in the functioning of shallow Mediterranean lakes: Workshop conclusions. Hydrobiologia, 584, 317–326. https://doi.org/10.1007/s10750-007-0577-x.
  • [23] Külköylüoğlu, O., Yağcı, A., Erbatur, İ., Yağcı, M.A., Bulut, C., Çınar, Ş. 2023. Effects of water quality changes on the Ostracoda (Crustacea) species diversity and seasonal occurrence patterns in Lake Eğirdir (Isparta, Turkey). Biologia, 78(3), 755-769.
  • [24] Kashima, K. 2002. Environmental and climatic changes during the last 20,000 years at Lake Tuz, central Turkey. Catena, 48(1-2), 3-20.
  • [25] Özpolat, E., Demir, T. 2019. The spatiotemporal shoreline dynamics of a delta under natural and anthropogenic conditions from 1950 to 2018: A dramatic case from the Eastern Mediterranean. Ocean & Coastal Management, 180, 104910.
  • [26] Ozturk, D., Sesli, F.A. 2015. Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean & Coastal Management, 118, 290-308.
  • [27] Akdeniz, H.B., İnam, Ş. 2023. Spatio-temporal analysis of shoreline changes and future forecasting: the case of Küçük Menderes Delta, Türkiye. Journal of Coastal Conservation, 27(4), 34. [28] Yilmaz, A.G., Imteaz, M.A. 2014. Climate change and water resources in Turkey: a review. International Journal of Water, 8(3), 299-313.
  • [29] Dervişoğlu, A., Yağmur, N., Fıratlı, E., Musaoğlu, N., Tanık, A. 2022. Spatio-temporal assessment of the shrinking Lake Burdur, Turkey. International Journal of Environment and Geoinformatics, 9(2), 169–176.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Yönetimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Orhun Soydan 0000-0003-0723-921X

Gönderilme Tarihi 26 Mayıs 2025
Kabul Tarihi 2 Aralık 2025
Erken Görünüm Tarihi 2 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Soydan, O. (2025). NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi. Uluslararası Çevresel Eğilimler Dergisi, 9(2), 109-119.
AMA Soydan O. NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi. IJENT. Aralık 2025;9(2):109-119.
Chicago Soydan, Orhun. “NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi”. Uluslararası Çevresel Eğilimler Dergisi 9, sy. 2 (Aralık 2025): 109-19.
EndNote Soydan O (01 Aralık 2025) NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi. Uluslararası Çevresel Eğilimler Dergisi 9 2 109–119.
IEEE O. Soydan, “NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi”, IJENT, c. 9, sy. 2, ss. 109–119, 2025.
ISNAD Soydan, Orhun. “NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi”. Uluslararası Çevresel Eğilimler Dergisi 9/2 (Aralık2025), 109-119.
JAMA Soydan O. NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi. IJENT. 2025;9:109–119.
MLA Soydan, Orhun. “NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi”. Uluslararası Çevresel Eğilimler Dergisi, c. 9, sy. 2, 2025, ss. 109-1.
Vancouver Soydan O. NDWI ve Doğrusal Regresyon Tabanlı Uydu Görüntüleme Yöntemi ile Burdur Gölü’nde Uzun Dönemli Hidrolojik Eğilimlerin Analizi. IJENT. 2025;9(2):109-1.

Environmental Engineering, Environmental Sustainability and Development, Industrial Waste Issues and Management, Global warming and Climate Change, Environmental Law, Environmental Developments and Legislation, Environmental Protection, Biotechnology and Environment, Fossil Fuels and Renewable Energy, Chemical Engineering, Civil Engineering, Geological Engineering, Mining Engineering, Agriculture Engineering, Biology, Chemistry, Physics,