Research Article
PDF EndNote BibTex RIS Cite

Year 2022, Volume 6, Issue 1, 31 - 47, 29.06.2022

Abstract

References

  • Adana Provincial Directorate of Environment and Urbanization, (2020). Adana Province 2019 Environmental Status Report, T.R. Adana Governorate.
  • Adana Province Population Data https://www.nufusu.com/il/adana-nufusu (Access Date: 01.06.2021).
  • Adana Province General Information https://adana.csb.gov.tr/ilimizi-taniyalim-i-1222 (Access Date: 10.11.2021).
  • Andrew Mourant, Ready to explode, Renewable Energy Focus Volume 15, Issue 1, January–February 2014, Pages 20-21, 45 https://doi.org/10.1016/S1755-0084(14)70016-X
  • Arslan, E., Solak, A. (2019). Türkiye’de Yenilenebilir Enerji Tüketiminin İthalat Üzerindeki Etkisi, Uluslararası Toplum
  • Araştırmaları Dergisi-International Journal of Society Researches, 10 (17), 1380-1407.
  • Bayraç, H. N. (2010). Enerji Kullanımının Küresel Isınmaya Etkisi Ve Önleyici Politikalar, Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi,11(2) 229-260.
  • Bekkering, J., Broekhuis, A. A., Van Gemert, W. J. T.2010.Optimisation of a green gas supply chainAreview. Bioresource technology, 101(2), 450-456.
  • Can, A. 2020. The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. Journal of Cleaner Production, 243, 118501.
  • Çelebi, M. (2017). Belediye Atıklarından Çöp Gazı Elde Edilerek Elektrik Enerjisi Üretilmesi ve Ülkemizdeki Örneklerinin İncelenmesi. Uzmanlık Tezi, İller Bankası Anonim Şirketi.
  • Çevre ve Şehircilik Bakanlığı. (2014). Çevre Yönetim Genel Müdürlüğü, Düzenli Depolama Tesisleri Saha Yönetimi ve İşletme Kılavuzu, 145s.
  • Energy Atlas, Adana Yuregir Sofulu Garbage Biogas Power Plant Report, http://www. enerjiatlasi.com/biyogaz/sofulu-coplugu (Access Date: 08.06.2021).
  • Ho, W.S., Hashim, H., Lim, J.S., Lee, C.T., Sam, K.C., Tan, S.T. 2017. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management. Applied Energy, 185, 1481-1489.
  • IEA, (2017). CO2 Emissions from Fuel Combustion 2017. International Energy Agency. https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019.
  • Jenbacher, (2020). Jenbacher Gas Engines Technical Specification, GE Jenbacher GmbH & CoOHG A-6200 Jenbach, Austria [online] http://www.cogeneration.com.ua/img/zstored/J420V21_en.pdf (Access Date: 15.08.2021).
  • Johari, A., Ahmed, S. I., Hashim, H., Alkali, H., Ramli, M. (2012). Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev., 16, 2907–2912. DOI: 10.1016/j.rser.2012.02.005.
  • Kocaman T. (2002). Sosyal Sektörler ve Koordinasyon Genel Müdürlüğü, “Plan Nüfus Projeksiyon Yöntemleri”, Ankara.
  • Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. (2005). U.S. Environmental Protection Agency. Office of Research and Development: Washington DC 20460.
  • Lee, U., Han, J., Wang, M. (2017). Evaluation Of Landfill Gas Emissions From Municipal Solid Waste Landfills for the Life-Cycle Analysis of Waste-to-Energy Pathways, Journal of Cleaner Production, 166, 335-342.
  • New EPA proposal targets municipal solid waste landfills, Volume 15, Issue 4, July–August 2014, Page 7 https://doi.org/10.1016/S1755-0084(14)70083-3
  • Ozaktaç, Ş. (2004). Düzenli Depolama Tesislerinde Depo Gazı Üretimine İlişkin Modelleme Olanaklarının Araştırılması. Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Ozturk, D. 2019. “Van İlindeki Tehlikeli Atıkların Mevcut Potansiyelinin Belirlenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(3), 271-282.
  • Ozturk, G. 2010. Katı Atık Yönetimi ve AB Uyumlu Uygulamaları, 3. Baskı, İstanbul, Türkiye: İSTAÇ, 9-62.
  • Rada, E. C., Ragazzi, M., Ionescu, G., Merler, G., Moedinger, F., Raboni, M., Torretta, V. 2014. Municipal Solid Waste treatment by integrated solutions: Energy and environmental balances. Energy Procedia, 50, 1037-1044.
  • Saltabaş, F., Yalçın, M. (2004). Depo Gazından Enerji Üretimi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (1), 44-47.
  • Sel, İ. (2016). Tam Ölçekli Düzenli Depolama Sahasında Depolanmış Evsel Katı Atıkların Metan Potansiyelinin Stokastik Yöntemlerle Belirlenmesi. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Surroop, D., Mohee, R. (2011). Power Generation From Landfill Gas. 2nd International Conference on Environmental Engineering and Applications IPCBEE. 17, 237-241, IACSIT Press, Singapore.
  • T.R. Ministry of Development (2018). Domestic Production in Energy Technologies, Working Group Report, Eleventh Development Plan (2019-2023), 219p., Ankara.
  • Turkish Statistical Institute, (2018). Municipal Waste Statistics, https://data.tuik.gov.tr/.
  • United States Environmental Protection Agency (EPA). Landfills, [Online]. Available: http://www.epa.gov/osw/nonhaz/municipal/c ombustion.html (Date of Access: 20 October 2014).
  • US EPA, Environmental Protection Agency, “NSW State of The Environment 1995” http://www.epa.nsw.gov.au/soe/95/ (Access Date: 15.08.2021).
  • Yakıncı, Z.D., Kök, M. (2017). Yenilenebilir Enerji ve Toplum Sağlığı, İ. Ü. Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 5 (1), 43-55.
  • Yalçın, M. A., Saltabaş, F. (2015). Depo Gazından Enerji Üretimi, SAU Fen Bilimleri Enstitüsü Dergisi, 8 (1), 44-47.
  • Yıldırım, B. (2020). Depo Gazından Enerji Üretimi ve Bir Örnek Uygulama. Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas.
  • Yılmaz, A., Ünvar, S., Koca, T., Koçer, A. (2017). Türkiye’de Biyogaz Üretimi ve Biyogaz Üretimi İstatistik Bilgileri, Technological Applied Sciences, 12 (4), 218-232.

Energy Recovery from Landfıll Gas in Turkey; Example of Adana

Year 2022, Volume 6, Issue 1, 31 - 47, 29.06.2022

Abstract

The need for energy increases with the increase of the population in the world and in our country over time. In line with this increasing energy need, it becomes imperative for countries to turn to alternative energy sources. The increase in population growth creates a serious waste problem by increasing not only energy demand but also consumption. Especially, the collection of solid wastes, both recycling and converting them into energy becomes an important issue. Considering the environmental problems caused by garbage and the increasing energy demand, generating energy while eliminating garbage appears to be the best method to solve these problems. In this study, LandGEM V302 mathematical calculation method was used in the study. Model constants are determined using literature information. A mathematical model study was carried out in order to determine the electrical energy and methane potential that may arise from approximately 7.810.662 tons of solid waste dumped in the sanitary landfill in Adana. It has been determined that 14.420.666 kWh of electrical energy can be obtained in 2026, the closing year. From 2020 to 2026, there was an increase of 521.5%. Considering the environmental problems caused by garbage and the increasing energy demand, generating energy while eliminating garbage appears to be the best method to solve these problems.

References

  • Adana Provincial Directorate of Environment and Urbanization, (2020). Adana Province 2019 Environmental Status Report, T.R. Adana Governorate.
  • Adana Province Population Data https://www.nufusu.com/il/adana-nufusu (Access Date: 01.06.2021).
  • Adana Province General Information https://adana.csb.gov.tr/ilimizi-taniyalim-i-1222 (Access Date: 10.11.2021).
  • Andrew Mourant, Ready to explode, Renewable Energy Focus Volume 15, Issue 1, January–February 2014, Pages 20-21, 45 https://doi.org/10.1016/S1755-0084(14)70016-X
  • Arslan, E., Solak, A. (2019). Türkiye’de Yenilenebilir Enerji Tüketiminin İthalat Üzerindeki Etkisi, Uluslararası Toplum
  • Araştırmaları Dergisi-International Journal of Society Researches, 10 (17), 1380-1407.
  • Bayraç, H. N. (2010). Enerji Kullanımının Küresel Isınmaya Etkisi Ve Önleyici Politikalar, Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi,11(2) 229-260.
  • Bekkering, J., Broekhuis, A. A., Van Gemert, W. J. T.2010.Optimisation of a green gas supply chainAreview. Bioresource technology, 101(2), 450-456.
  • Can, A. 2020. The statistical modeling of potential biogas production capacity from solid waste disposal sites in Turkey. Journal of Cleaner Production, 243, 118501.
  • Çelebi, M. (2017). Belediye Atıklarından Çöp Gazı Elde Edilerek Elektrik Enerjisi Üretilmesi ve Ülkemizdeki Örneklerinin İncelenmesi. Uzmanlık Tezi, İller Bankası Anonim Şirketi.
  • Çevre ve Şehircilik Bakanlığı. (2014). Çevre Yönetim Genel Müdürlüğü, Düzenli Depolama Tesisleri Saha Yönetimi ve İşletme Kılavuzu, 145s.
  • Energy Atlas, Adana Yuregir Sofulu Garbage Biogas Power Plant Report, http://www. enerjiatlasi.com/biyogaz/sofulu-coplugu (Access Date: 08.06.2021).
  • Ho, W.S., Hashim, H., Lim, J.S., Lee, C.T., Sam, K.C., Tan, S.T. 2017. Waste Management Pinch Analysis (WAMPA): Application of Pinch Analysis for greenhouse gas (GHG) emission reduction in municipal solid waste management. Applied Energy, 185, 1481-1489.
  • IEA, (2017). CO2 Emissions from Fuel Combustion 2017. International Energy Agency. https://www.iea.org/reports/co2-emissions-from-fuel-combustion-2019.
  • Jenbacher, (2020). Jenbacher Gas Engines Technical Specification, GE Jenbacher GmbH & CoOHG A-6200 Jenbach, Austria [online] http://www.cogeneration.com.ua/img/zstored/J420V21_en.pdf (Access Date: 15.08.2021).
  • Johari, A., Ahmed, S. I., Hashim, H., Alkali, H., Ramli, M. (2012). Economic and environmental benefits of landfill gas from municipal solid waste in Malaysia. Renew. Sustain. Energy Rev., 16, 2907–2912. DOI: 10.1016/j.rser.2012.02.005.
  • Kocaman T. (2002). Sosyal Sektörler ve Koordinasyon Genel Müdürlüğü, “Plan Nüfus Projeksiyon Yöntemleri”, Ankara.
  • Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. (2005). U.S. Environmental Protection Agency. Office of Research and Development: Washington DC 20460.
  • Lee, U., Han, J., Wang, M. (2017). Evaluation Of Landfill Gas Emissions From Municipal Solid Waste Landfills for the Life-Cycle Analysis of Waste-to-Energy Pathways, Journal of Cleaner Production, 166, 335-342.
  • New EPA proposal targets municipal solid waste landfills, Volume 15, Issue 4, July–August 2014, Page 7 https://doi.org/10.1016/S1755-0084(14)70083-3
  • Ozaktaç, Ş. (2004). Düzenli Depolama Tesislerinde Depo Gazı Üretimine İlişkin Modelleme Olanaklarının Araştırılması. Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Ozturk, D. 2019. “Van İlindeki Tehlikeli Atıkların Mevcut Potansiyelinin Belirlenmesi. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 34(3), 271-282.
  • Ozturk, G. 2010. Katı Atık Yönetimi ve AB Uyumlu Uygulamaları, 3. Baskı, İstanbul, Türkiye: İSTAÇ, 9-62.
  • Rada, E. C., Ragazzi, M., Ionescu, G., Merler, G., Moedinger, F., Raboni, M., Torretta, V. 2014. Municipal Solid Waste treatment by integrated solutions: Energy and environmental balances. Energy Procedia, 50, 1037-1044.
  • Saltabaş, F., Yalçın, M. (2004). Depo Gazından Enerji Üretimi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8 (1), 44-47.
  • Sel, İ. (2016). Tam Ölçekli Düzenli Depolama Sahasında Depolanmış Evsel Katı Atıkların Metan Potansiyelinin Stokastik Yöntemlerle Belirlenmesi. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • Surroop, D., Mohee, R. (2011). Power Generation From Landfill Gas. 2nd International Conference on Environmental Engineering and Applications IPCBEE. 17, 237-241, IACSIT Press, Singapore.
  • T.R. Ministry of Development (2018). Domestic Production in Energy Technologies, Working Group Report, Eleventh Development Plan (2019-2023), 219p., Ankara.
  • Turkish Statistical Institute, (2018). Municipal Waste Statistics, https://data.tuik.gov.tr/.
  • United States Environmental Protection Agency (EPA). Landfills, [Online]. Available: http://www.epa.gov/osw/nonhaz/municipal/c ombustion.html (Date of Access: 20 October 2014).
  • US EPA, Environmental Protection Agency, “NSW State of The Environment 1995” http://www.epa.nsw.gov.au/soe/95/ (Access Date: 15.08.2021).
  • Yakıncı, Z.D., Kök, M. (2017). Yenilenebilir Enerji ve Toplum Sağlığı, İ. Ü. Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 5 (1), 43-55.
  • Yalçın, M. A., Saltabaş, F. (2015). Depo Gazından Enerji Üretimi, SAU Fen Bilimleri Enstitüsü Dergisi, 8 (1), 44-47.
  • Yıldırım, B. (2020). Depo Gazından Enerji Üretimi ve Bir Örnek Uygulama. Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Sivas.
  • Yılmaz, A., Ünvar, S., Koca, T., Koçer, A. (2017). Türkiye’de Biyogaz Üretimi ve Biyogaz Üretimi İstatistik Bilgileri, Technological Applied Sciences, 12 (4), 218-232.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Articles
Authors

Belfin ŞAHİN>
NEVSEHIR UNIVERSITY, FACULTY OF ENGINEERING-ARCHITECTURE
0000-0002-2190-7328
Türkiye


Seval ARAS> (Primary Author)
NEVŞEHİR HACI BEKTAŞ VELİ ÜNİVERSİTESİ
0000-0002-6392-0117
Türkiye

Publication Date June 29, 2022
Published in Issue Year 2022, Volume 6, Issue 1

Cite

Bibtex @research article { ijent1127867, journal = {International Journal of Environmental Trends (IJENT)}, issn = {2602-4160}, address = {ijentjournal@gmail.com}, publisher = {Muhammed Kamil ÖDEN}, year = {2022}, volume = {6}, number = {1}, pages = {31 - 47}, title = {Energy Recovery from Landfıll Gas in Turkey; Example of Adana}, key = {cite}, author = {Aras, Seval} }
APA Şahin, B. & Aras, S. (2022). Energy Recovery from Landfıll Gas in Turkey; Example of Adana . International Journal of Environmental Trends (IJENT) , 6 (1) , 31-47 . Retrieved from https://dergipark.org.tr/en/pub/ijent/issue/70652/1127867
MLA Şahin, B. , Aras, S. "Energy Recovery from Landfıll Gas in Turkey; Example of Adana" . International Journal of Environmental Trends (IJENT) 6 (2022 ): 31-47 <https://dergipark.org.tr/en/pub/ijent/issue/70652/1127867>
Chicago Şahin, B. , Aras, S. "Energy Recovery from Landfıll Gas in Turkey; Example of Adana". International Journal of Environmental Trends (IJENT) 6 (2022 ): 31-47
RIS TY - JOUR T1 - Energy Recovery from Landfıll Gas in Turkey; Example of Adana AU - BelfinŞahin, SevalAras Y1 - 2022 PY - 2022 N1 - DO - T2 - International Journal of Environmental Trends (IJENT) JF - Journal JO - JOR SP - 31 EP - 47 VL - 6 IS - 1 SN - 2602-4160- M3 - UR - Y2 - 2022 ER -
EndNote %0 International Journal of Environmental Trends (IJENT) Energy Recovery from Landfıll Gas in Turkey; Example of Adana %A Belfin Şahin , Seval Aras %T Energy Recovery from Landfıll Gas in Turkey; Example of Adana %D 2022 %J International Journal of Environmental Trends (IJENT) %P 2602-4160- %V 6 %N 1 %R %U
ISNAD Şahin, Belfin , Aras, Seval . "Energy Recovery from Landfıll Gas in Turkey; Example of Adana". International Journal of Environmental Trends (IJENT) 6 / 1 (June 2022): 31-47 .
AMA Şahin B. , Aras S. Energy Recovery from Landfıll Gas in Turkey; Example of Adana. IJENT. 2022; 6(1): 31-47.
Vancouver Şahin B. , Aras S. Energy Recovery from Landfıll Gas in Turkey; Example of Adana. International Journal of Environmental Trends (IJENT). 2022; 6(1): 31-47.
IEEE B. Şahin and S. Aras , "Energy Recovery from Landfıll Gas in Turkey; Example of Adana", International Journal of Environmental Trends (IJENT), vol. 6, no. 1, pp. 31-47, Jun. 2022

Environmental EngineeringChemical Engineering, Civil Engineering, Computer Engineering, Electrical-Electronics Engineering, Food Engineering, Geological Engineering, Geomatic Engineering, Industrial Engineering, Mechanical Engineering, Mechatronics Engineering, Mining Engineering, Agriculture Engineering,Fisheries Engineering, Biology, Chemistry, Physics, Architecture