Research Article
BibTex RIS Cite
Year 2019, Volume: 2 Issue: 1, 20 - 27, 02.01.2019

Abstract

References

  • [1] Çakıroğlu, A.,1961, Hiperstatik Sistemlerin Hesap Metotları. Arı Kitabevi, İstanbul.
  • [2] Tezcan, S., 1970, Çubuk Sistemlerin Elektronik Hesap Makinaları İle Çözümü. İ.T.Ü. Yayını Sayı 12, İstanbul.
  • [3] Vanderbilt, M. D., 1978, Fixed and Action Stiffness Matrices for Nonprismatic Beams, ACI, 290-298.
  • [4] Funk, R. R. and Wang, K.1988, Stiffness of Non prismatic Member, J. of Struct. Engnrg, 114, 2, 484-494.
  • [5] Kıral, E., Mengi, Y., Dündar, C.,1986, Yapı Mekaniğinde Bilgisayar programları , Yayın No: 12, Teknek Yayınevi, Adana.
  • [6] Eisenberger, M., 1985, Explicit Stiffness Matrices Nonprismatic Members, Comput. &Struct., 20, 4, 715-720.
  • [7] Brown, C. J., 1984 Approximate Stiffness Matrices for Tapered Beams, J. of Struct. Engnrg, 110, 3050-3055.
  • [8] Kosko, E., 1982, Uniform Element Modeling of Tapered Frame Members, ASCE, 108, STI, 245-264.
  • [9] Fertis, D. G. and Keene, M.E.,1990, Elastic and Inelastic Analysis of Nonprismatic Members, J. of Struct. Engnrg., 116, 2, 475-489.
  • [10] Mezaini N, Balkaya, C, Çıtıpıtıoğlu E, 1991, Analysis of Frames with Nonprismatic Members, ASCE, 117, 1573-1591.
  • [11] Topçu, A.,1992, Değişken Kesitli Düzlem Çerçeve Elemanların Temel Rijitlik Katsayılarının ve Ankastrelik Kuvvetlerinin Analitik ve Romberg İntegrasyon Yöntemi İle Hesabı”. İnşaat Mühendisliğinde Bilgisayar Kullanımı III. Sempozyumu, İ.T.Ü, İstanbul.
  • [12] Karaduman, A,1993, Değişken Kesitli Düzlem Taşıyıcı Sistemlerin Matris Deplasman Yöntemi ile Statik Çözümü, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisligi Anabilim Dalı, Konya, 132 s.
  • [13] Ruta, F, 1999, Application of Chebychev series to solution of non-prismatic beam vibration problems, Journal of Sound and Vibration 227(2), 449-467.
  • [14] Yuksel SB, 2012, Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5, Structural Engınerıng and Mechanıcs V: 22 Issue: 6 pp:849-866.
  • [15] Archundia-Aranda H, Grande-Vega A, Tena-Colunga A, 2013, Behavior of reinforced concrete haunched beams subjected to cyclic shear loading, Engıneerıng Structures V: 49, pp: 27-42. [16] Raju P.M, Rajsekhar K, Sandeep T.R,2014, Performance of non-prismatic simply supported prestressed concrete beams, Structural Engıneerıng And Mechanıcs V: 52 Issue: 4 pp: 723-738.
  • [17] Orr JJ, Ibell TJ, Darby AP, 2014, Shear behavior of non-prismatic steel reinforced concrete beams,Engineering Structures, 71, 48-59.
  • [18] Thermou GE, Katakalos K., Manos G.,2015, Influence of the cross section shape on the behaviour of SRG-confined prismatic concrete specimens (In Press), Materials and Structures/Materiaux et Constructions, 19p
  • [19] Ma, Y.Jiong, Chen, Guoping, 2016, Model Analysis of a rectangular Variable cross section beam with multiple cracks under different temperatures , Journal of Vibroengineering, 18(5),3078-3088.
  • [20] Ma, Y.Jiong, Chen, Guoping, Yang, Fan, 2017, Model Analysis of a Simply Supported Steel Beam with cracks under different temperatures Load, Shock and Vibraation, (3), 1-10.

An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams

Year 2019, Volume: 2 Issue: 1, 20 - 27, 02.01.2019

Abstract



In this work, the effect of equal or different temperature variations
investigated for varying cross-sectioned plain element by employing matrix
displacement methods. Necessary basic stiffness coefficients for stiffness
matrices of frame elements and fixed end moments were obtained analytically and
by using Romberg integration methods. Thus, use of table and charts is not
needed. At the end of this work an example of varying cross-sectioned frame
under equal and different temperature variation was solved by using a program
which was prepared in BASIC language.



References

  • [1] Çakıroğlu, A.,1961, Hiperstatik Sistemlerin Hesap Metotları. Arı Kitabevi, İstanbul.
  • [2] Tezcan, S., 1970, Çubuk Sistemlerin Elektronik Hesap Makinaları İle Çözümü. İ.T.Ü. Yayını Sayı 12, İstanbul.
  • [3] Vanderbilt, M. D., 1978, Fixed and Action Stiffness Matrices for Nonprismatic Beams, ACI, 290-298.
  • [4] Funk, R. R. and Wang, K.1988, Stiffness of Non prismatic Member, J. of Struct. Engnrg, 114, 2, 484-494.
  • [5] Kıral, E., Mengi, Y., Dündar, C.,1986, Yapı Mekaniğinde Bilgisayar programları , Yayın No: 12, Teknek Yayınevi, Adana.
  • [6] Eisenberger, M., 1985, Explicit Stiffness Matrices Nonprismatic Members, Comput. &Struct., 20, 4, 715-720.
  • [7] Brown, C. J., 1984 Approximate Stiffness Matrices for Tapered Beams, J. of Struct. Engnrg, 110, 3050-3055.
  • [8] Kosko, E., 1982, Uniform Element Modeling of Tapered Frame Members, ASCE, 108, STI, 245-264.
  • [9] Fertis, D. G. and Keene, M.E.,1990, Elastic and Inelastic Analysis of Nonprismatic Members, J. of Struct. Engnrg., 116, 2, 475-489.
  • [10] Mezaini N, Balkaya, C, Çıtıpıtıoğlu E, 1991, Analysis of Frames with Nonprismatic Members, ASCE, 117, 1573-1591.
  • [11] Topçu, A.,1992, Değişken Kesitli Düzlem Çerçeve Elemanların Temel Rijitlik Katsayılarının ve Ankastrelik Kuvvetlerinin Analitik ve Romberg İntegrasyon Yöntemi İle Hesabı”. İnşaat Mühendisliğinde Bilgisayar Kullanımı III. Sempozyumu, İ.T.Ü, İstanbul.
  • [12] Karaduman, A,1993, Değişken Kesitli Düzlem Taşıyıcı Sistemlerin Matris Deplasman Yöntemi ile Statik Çözümü, Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat Mühendisligi Anabilim Dalı, Konya, 132 s.
  • [13] Ruta, F, 1999, Application of Chebychev series to solution of non-prismatic beam vibration problems, Journal of Sound and Vibration 227(2), 449-467.
  • [14] Yuksel SB, 2012, Assessment of non-prismatic beams having symmetrical parabolic haunches with constant haunch length ratio of 0.5, Structural Engınerıng and Mechanıcs V: 22 Issue: 6 pp:849-866.
  • [15] Archundia-Aranda H, Grande-Vega A, Tena-Colunga A, 2013, Behavior of reinforced concrete haunched beams subjected to cyclic shear loading, Engıneerıng Structures V: 49, pp: 27-42. [16] Raju P.M, Rajsekhar K, Sandeep T.R,2014, Performance of non-prismatic simply supported prestressed concrete beams, Structural Engıneerıng And Mechanıcs V: 52 Issue: 4 pp: 723-738.
  • [17] Orr JJ, Ibell TJ, Darby AP, 2014, Shear behavior of non-prismatic steel reinforced concrete beams,Engineering Structures, 71, 48-59.
  • [18] Thermou GE, Katakalos K., Manos G.,2015, Influence of the cross section shape on the behaviour of SRG-confined prismatic concrete specimens (In Press), Materials and Structures/Materiaux et Constructions, 19p
  • [19] Ma, Y.Jiong, Chen, Guoping, 2016, Model Analysis of a rectangular Variable cross section beam with multiple cracks under different temperatures , Journal of Vibroengineering, 18(5),3078-3088.
  • [20] Ma, Y.Jiong, Chen, Guoping, Yang, Fan, 2017, Model Analysis of a Simply Supported Steel Beam with cracks under different temperatures Load, Shock and Vibraation, (3), 1-10.
There are 19 citations in total.

Details

Primary Language English
Subjects Environmental Sciences
Journal Section Articles
Authors

Adnan Karaduman This is me

Publication Date January 2, 2019
Submission Date January 2, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Karaduman, A. (2019). An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams. International Journal of Environmental Pollution and Environmental Modelling, 2(1), 20-27.
AMA Karaduman A. An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams. Int. j. environ. pollut. environ. model. January 2019;2(1):20-27.
Chicago Karaduman, Adnan. “An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams”. International Journal of Environmental Pollution and Environmental Modelling 2, no. 1 (January 2019): 20-27.
EndNote Karaduman A (January 1, 2019) An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams. International Journal of Environmental Pollution and Environmental Modelling 2 1 20–27.
IEEE A. Karaduman, “An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams”, Int. j. environ. pollut. environ. model., vol. 2, no. 1, pp. 20–27, 2019.
ISNAD Karaduman, Adnan. “An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams”. International Journal of Environmental Pollution and Environmental Modelling 2/1 (January 2019), 20-27.
JAMA Karaduman A. An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams. Int. j. environ. pollut. environ. model. 2019;2:20–27.
MLA Karaduman, Adnan. “An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams”. International Journal of Environmental Pollution and Environmental Modelling, vol. 2, no. 1, 2019, pp. 20-27.
Vancouver Karaduman A. An Analysis of The Effect of Different and Equal Temperature Variation on Variable Cross-Sectioned Beams. Int. j. environ. pollut. environ. model. 2019;2(1):20-7.
 ❤ IJEPEM.