Research Article
BibTex RIS Cite

Year 2025, Volume: 10 Issue: 2, 569 - 594, 26.06.2025
https://doi.org/10.58559/ijes.1572361

Abstract

References

  • [1] Ministry of Energy and Natural Resources, Turkey (MENR). Türkiye national energy plan. Ministry of Energy and Natural Resources (MENR), Turkey, 2022.
  • [2] IEA (International Energy Agency). Energy policy review -2021. International Energy Agency (IEA), Paris, France, 2021.
  • [3] Inal S, Yasar Ö, Aydıner K. Importance of Domestic Coal (Lignite) Reserves on Turkey’s Energy Independency. MT Science 2021; (19): 11-32.
  • [4] IEA (International Energy Agency). Energy policy review-2022. International Energy Agency (IEA), Paris, France, 2022.
  • [5] Cüce H, Uğur O. Evaluation of Greenhouse Gas Emissions from Highway Transport in Nevşehir Province in the Beginning Period of the Covid-19 Pandemic. Karadeniz Fen Bilim Derg. (The Black Sea Journal of Sciences). 2021; 11(1): 118–134. doi: 10.31466/kfbd.885206.
  • [6] BP (British Petroleum). Statistical review of world energy 2022. British Petroleum, London, 2022.
  • [7] Chandio AA, Gokmenoglu KK, Ahmad F. Addressing the long- and short-run effects of climate change on major food crops production in Turkey. Environmental Science and Pollution Research 2021; 28(37): 51657–51673. doi:10.1007/s11356-021-14358-8
  • [8] Babatunde Adetayo M, Kursun B. Transforming Turkish electricity system in the context of circular economy and green deal: impacts on steel and agricultural production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024; 46(1): 5344–5362. doi:10.1080/15567036.2024.2337314
  • [9] Pirlot A. Carbon Border Adjustment Measures: A Straightforward Multi-Purpose Climate Change Instrument? Journal of Environmental Law 2022; 34(1): 25–52. doi:10.1093/jel/eqab028
  • [10] Şahi̇n G, Taksi̇m MA, Yi̇tgi̇n B. Effects of the European Green Deal on Turkey’s electricity market. Journal of Business Economics and Management Research 2021; 4 (1):40–58. doi:10.33416/baybem.835052
  • [11] Kilinç A. Impact of carbon border adjustment mechanism on iron-steel and cement sectors in Turkey: a social accounting matrix multiplier analysis. PhD Thesis, Middle East Technical University, 2022.
  • [12] Türker YÖ, Aydin A. How ready is the Turkish legislation for the Green Deal? Energy and Climate Change 2022; 3:100084. doi:10.1016/j.egycc.2022.100084
  • [13] Taneja S, Ozen E. Impact of the European Green Deal (EDG) on the Agricultural Carbon (CO2) Emission in Turkey. International Journal of Sustainable Development and Planning 2023; 18(3): 715–727. doi:10.18280/ijsdp.180307
  • [14] Dudu H, Çakmak EH. Climate change and agriculture: an integrated approach to evaluate economy-wide effects for Turkey. Climate and Development 2018; 10(3): 275–288. doi:10.1080/17565529.2017.1372259
  • [15] Korkmaz O, Önöz B. Modelling the potential impacts of nuclear energy and renewables in the turkish energy system. Energies 2022; 15 (4):1392. doi:10.3390/en15041392
  • [16] Cüce H. Circular Environmental Policies in The Industrial Production. Nevşehir Bilim Ve Teknol. Derg. (Nevşehir Journal of Science and Technology) 2018; 7(2): 111–122. doi: 10.17100/nevbiltek.424912
  • [17] Robert AU. Industrial Metabolism: Theory and policy. National Academy Press, Washington. DC, USA, 1994.
  • [18] Braungart M, McDonough W, Bollinger A. Cradle-to-cradle design: creating healthy emissions: a strategy for eco-effective product and system design. J. Clean. Prod. 2007; 15:1337–1348
  • [19] Thakker V, Bakshi BR. Toward sustainable circular economies: A computational framework for assessment and design. J. Clean. Prod. 2021; (295): 126353. doi: 10.1016/j.jclepro.2021.126353
  • [20] Chang S, Zhuo J, Meng S, Qin S, Yao Q. Clean Coal Technologies in China: Current Status and Future Perspectives. Engineering 2016; 2(4): 447–459. doi: 10.1016/J.ENG.2016.04.015
  • [21] Adetayo MB, Onyekonwu MO, Ogolo O. Optimal Recovery of Heavy-Oil Using Numerical Simulation of Polymer Flooding. Petroleum and Coal 2020; 62: 316–328
  • [22] Akbostancı E, Tunç Gİ, Türüt-Aşık S. Drivers of fuel based carbon dioxide emissions: The case of Turkey. Renewable and Sustainable Energy Reviews 2018; 81: 2599–2608. doi:10.1016/j.rser.2017.06.066
  • [23] TUIK (Turkish Statistical Institute). Turkish population projections. Turkish Statistical Institute, Turkey, 2022.
  • [24] Kavak K, Hakyemez C, Şentürk Z, Arıkan E, Çelen E, Kardeş Y, Emecan M. Energy Outlook. The Industrial Development Bank of Turkey (TSKB), Turkey, 2022.
  • [25] Presidency of strategy and budget (PSB). Eleventh development plan, 2019-2023. Presidency of strategy and budget (PSB), Turkey, 2020.
  • [26] Özdemir A, Günkaya Z, Özkan A, Ersen O, Bilgiç M, Banar M. Lifecycle Assessment of Steel Rebar Production with Induction Melting Furnace: Case Study in Turkey. Journal of Hazardous, Toxic, and Radioactive Waste 2018; 22(2): 04017027. doi:10.1061/(ASCE)HZ.2153-5515.0000385
  • [27] Atilgan B, Azapagic A. Renewable electricity in Turkey: Life cycle environmental impacts. Renewable Energy 2016; 89:649–657. doi:10.1016/j.renene.2015.11.082
  • [28] Kursun B. Role of solar power in shifting the Turkish electricity sector towards sustainability. Clean Energy 2022; 6(2): 313–324. doi:10.1093/ce/zkac002
  • [29] Cekinir S, Ozgener O, Ozgener L. Türkiye’s energy projection for 2050. Renewable Energy Focus 2022; 43:93–116. doi:10.1016/j.ref.2022.09.003
  • [30] Acar S, Aşıcı AA, Yeldan AE. Potential effects of the EU’s carbon border adjustment mechanism on the Turkish economy. Environment, Development and Sustainability 2022; 24 (6):8162–8194. https://doi.org/10.1007/s10668-021-01779-1
  • [31] Teimourzadeh S, Tör O, Kat B, Şahin Ü, Demirkol K, Künar A, Voyvoda E, Veldan E. Turkey’s decarbonization pathway: Timeline and geography of the transition (2020-2050). Istanbul Policy Centre (IPC), Sabancı University, Istanbul, Turkey, 2023.
  • [32] Güllü AB, Aksoy H, Serhadlıoğlu S, Taranto Y, Çalışkan RY, Vita AD, Karakousis V, Rogner M, Godron P, Dinçel G. Net Zero 2053: A Roadmap for the Turkish Electricity Sector. SHURA Energy Transition Center, Sabancı University, Istanbul, Turkey, 2023.
  • [33] IEA (International Energy Agency). Key energy statistics. International Energy Agency (IEA), Turkey, 2023.
  • [34] Mehmet M. Vision 2023: forecasting Turkey’s natural gas demand between 2013 and 2030. Renewable and Sustainable Energy Reviews 2013; (22): 393–400.
  • [35] World Nuclear Association (WNA). Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. World Nuclear Association (WNA), London, UK, 2011.
  • [36] TUIK (Turkish Statistical Institute). Turkish greenhouse gas inventory 1990-2021: National inventory report for submission under the United Nations Framework Convention on Climate Change. TUIK, Turkey, 2023.
  • [37] Brandl P, Bui M, Hallett J P, Mac Dowell N. Beyond 90% capture: Possible, but at what cost? International Journal of Greenhouse Gas Control 2021; 105: 103239. doi:10.1016/j.ijggc.2020.103239
  • [38] Mac Dowell N, Fennell PS, Shah N, Maitland GC. The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change 2017; 7(4): 243–249. doi:10.1038/nclimate3231

Türkiye’s net zero plan: Mathematical analysis of emission and mitigation approaches

Year 2025, Volume: 10 Issue: 2, 569 - 594, 26.06.2025
https://doi.org/10.58559/ijes.1572361

Abstract

Türkiye’s 2022 energy plan on net zero studies Türkiye’s envisaged energy utilization based on energy resources, but excludes the associated emissions. This study has filled this gap and the calculations are based on primary energy consumption. Also, historical data-based forecasts have been carried out for comparison. Existing emission reduction methods investigated are the single process mitigation (SpM) which includes energy substitution (ES) and impact factor reduction (IFR), and the smart mitigation (SM) which combines both SpM methods. Unlike previous studies, the carbon capture efficiency parameter (Ceff) has also been introduced. Four case studies were considered: business as usual-based energy plan (Eplan_BAU), energy plan (Eplan), business as usual-based projection (Proj_BAU), and projection (Proj). The Eplan and Proj data give a cumulative and average annual energy consumption of 122.75 EJ and 7.67 EJ, and 151.39 EJ and 9.46 EJ respectively from 2020 to 2035, and the Eplan emission peaks by 2032. Relative to Proj_BAU, Proj and Eplan_BAU, the Eplan gives an emission reduction of 24.45%, 18.54% and 6.82% respectively. Also, the energy substitution and impact factor reduction mitigation approaches give emission reduction of ranges 13.46-56.10% and 12.55-62.74% respectively relative to Eplan. All in all, the SM gives the highest emission reduction.

References

  • [1] Ministry of Energy and Natural Resources, Turkey (MENR). Türkiye national energy plan. Ministry of Energy and Natural Resources (MENR), Turkey, 2022.
  • [2] IEA (International Energy Agency). Energy policy review -2021. International Energy Agency (IEA), Paris, France, 2021.
  • [3] Inal S, Yasar Ö, Aydıner K. Importance of Domestic Coal (Lignite) Reserves on Turkey’s Energy Independency. MT Science 2021; (19): 11-32.
  • [4] IEA (International Energy Agency). Energy policy review-2022. International Energy Agency (IEA), Paris, France, 2022.
  • [5] Cüce H, Uğur O. Evaluation of Greenhouse Gas Emissions from Highway Transport in Nevşehir Province in the Beginning Period of the Covid-19 Pandemic. Karadeniz Fen Bilim Derg. (The Black Sea Journal of Sciences). 2021; 11(1): 118–134. doi: 10.31466/kfbd.885206.
  • [6] BP (British Petroleum). Statistical review of world energy 2022. British Petroleum, London, 2022.
  • [7] Chandio AA, Gokmenoglu KK, Ahmad F. Addressing the long- and short-run effects of climate change on major food crops production in Turkey. Environmental Science and Pollution Research 2021; 28(37): 51657–51673. doi:10.1007/s11356-021-14358-8
  • [8] Babatunde Adetayo M, Kursun B. Transforming Turkish electricity system in the context of circular economy and green deal: impacts on steel and agricultural production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2024; 46(1): 5344–5362. doi:10.1080/15567036.2024.2337314
  • [9] Pirlot A. Carbon Border Adjustment Measures: A Straightforward Multi-Purpose Climate Change Instrument? Journal of Environmental Law 2022; 34(1): 25–52. doi:10.1093/jel/eqab028
  • [10] Şahi̇n G, Taksi̇m MA, Yi̇tgi̇n B. Effects of the European Green Deal on Turkey’s electricity market. Journal of Business Economics and Management Research 2021; 4 (1):40–58. doi:10.33416/baybem.835052
  • [11] Kilinç A. Impact of carbon border adjustment mechanism on iron-steel and cement sectors in Turkey: a social accounting matrix multiplier analysis. PhD Thesis, Middle East Technical University, 2022.
  • [12] Türker YÖ, Aydin A. How ready is the Turkish legislation for the Green Deal? Energy and Climate Change 2022; 3:100084. doi:10.1016/j.egycc.2022.100084
  • [13] Taneja S, Ozen E. Impact of the European Green Deal (EDG) on the Agricultural Carbon (CO2) Emission in Turkey. International Journal of Sustainable Development and Planning 2023; 18(3): 715–727. doi:10.18280/ijsdp.180307
  • [14] Dudu H, Çakmak EH. Climate change and agriculture: an integrated approach to evaluate economy-wide effects for Turkey. Climate and Development 2018; 10(3): 275–288. doi:10.1080/17565529.2017.1372259
  • [15] Korkmaz O, Önöz B. Modelling the potential impacts of nuclear energy and renewables in the turkish energy system. Energies 2022; 15 (4):1392. doi:10.3390/en15041392
  • [16] Cüce H. Circular Environmental Policies in The Industrial Production. Nevşehir Bilim Ve Teknol. Derg. (Nevşehir Journal of Science and Technology) 2018; 7(2): 111–122. doi: 10.17100/nevbiltek.424912
  • [17] Robert AU. Industrial Metabolism: Theory and policy. National Academy Press, Washington. DC, USA, 1994.
  • [18] Braungart M, McDonough W, Bollinger A. Cradle-to-cradle design: creating healthy emissions: a strategy for eco-effective product and system design. J. Clean. Prod. 2007; 15:1337–1348
  • [19] Thakker V, Bakshi BR. Toward sustainable circular economies: A computational framework for assessment and design. J. Clean. Prod. 2021; (295): 126353. doi: 10.1016/j.jclepro.2021.126353
  • [20] Chang S, Zhuo J, Meng S, Qin S, Yao Q. Clean Coal Technologies in China: Current Status and Future Perspectives. Engineering 2016; 2(4): 447–459. doi: 10.1016/J.ENG.2016.04.015
  • [21] Adetayo MB, Onyekonwu MO, Ogolo O. Optimal Recovery of Heavy-Oil Using Numerical Simulation of Polymer Flooding. Petroleum and Coal 2020; 62: 316–328
  • [22] Akbostancı E, Tunç Gİ, Türüt-Aşık S. Drivers of fuel based carbon dioxide emissions: The case of Turkey. Renewable and Sustainable Energy Reviews 2018; 81: 2599–2608. doi:10.1016/j.rser.2017.06.066
  • [23] TUIK (Turkish Statistical Institute). Turkish population projections. Turkish Statistical Institute, Turkey, 2022.
  • [24] Kavak K, Hakyemez C, Şentürk Z, Arıkan E, Çelen E, Kardeş Y, Emecan M. Energy Outlook. The Industrial Development Bank of Turkey (TSKB), Turkey, 2022.
  • [25] Presidency of strategy and budget (PSB). Eleventh development plan, 2019-2023. Presidency of strategy and budget (PSB), Turkey, 2020.
  • [26] Özdemir A, Günkaya Z, Özkan A, Ersen O, Bilgiç M, Banar M. Lifecycle Assessment of Steel Rebar Production with Induction Melting Furnace: Case Study in Turkey. Journal of Hazardous, Toxic, and Radioactive Waste 2018; 22(2): 04017027. doi:10.1061/(ASCE)HZ.2153-5515.0000385
  • [27] Atilgan B, Azapagic A. Renewable electricity in Turkey: Life cycle environmental impacts. Renewable Energy 2016; 89:649–657. doi:10.1016/j.renene.2015.11.082
  • [28] Kursun B. Role of solar power in shifting the Turkish electricity sector towards sustainability. Clean Energy 2022; 6(2): 313–324. doi:10.1093/ce/zkac002
  • [29] Cekinir S, Ozgener O, Ozgener L. Türkiye’s energy projection for 2050. Renewable Energy Focus 2022; 43:93–116. doi:10.1016/j.ref.2022.09.003
  • [30] Acar S, Aşıcı AA, Yeldan AE. Potential effects of the EU’s carbon border adjustment mechanism on the Turkish economy. Environment, Development and Sustainability 2022; 24 (6):8162–8194. https://doi.org/10.1007/s10668-021-01779-1
  • [31] Teimourzadeh S, Tör O, Kat B, Şahin Ü, Demirkol K, Künar A, Voyvoda E, Veldan E. Turkey’s decarbonization pathway: Timeline and geography of the transition (2020-2050). Istanbul Policy Centre (IPC), Sabancı University, Istanbul, Turkey, 2023.
  • [32] Güllü AB, Aksoy H, Serhadlıoğlu S, Taranto Y, Çalışkan RY, Vita AD, Karakousis V, Rogner M, Godron P, Dinçel G. Net Zero 2053: A Roadmap for the Turkish Electricity Sector. SHURA Energy Transition Center, Sabancı University, Istanbul, Turkey, 2023.
  • [33] IEA (International Energy Agency). Key energy statistics. International Energy Agency (IEA), Turkey, 2023.
  • [34] Mehmet M. Vision 2023: forecasting Turkey’s natural gas demand between 2013 and 2030. Renewable and Sustainable Energy Reviews 2013; (22): 393–400.
  • [35] World Nuclear Association (WNA). Comparison of Lifecycle Greenhouse Gas Emissions of Various Electricity Generation Sources. World Nuclear Association (WNA), London, UK, 2011.
  • [36] TUIK (Turkish Statistical Institute). Turkish greenhouse gas inventory 1990-2021: National inventory report for submission under the United Nations Framework Convention on Climate Change. TUIK, Turkey, 2023.
  • [37] Brandl P, Bui M, Hallett J P, Mac Dowell N. Beyond 90% capture: Possible, but at what cost? International Journal of Greenhouse Gas Control 2021; 105: 103239. doi:10.1016/j.ijggc.2020.103239
  • [38] Mac Dowell N, Fennell PS, Shah N, Maitland GC. The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change 2017; 7(4): 243–249. doi:10.1038/nclimate3231
There are 38 citations in total.

Details

Primary Language English
Subjects Environmental Pollution and Prevention
Journal Section Research Article
Authors

Mujeeb Adetayo 0000-0001-7707-7864

Publication Date June 26, 2025
Submission Date October 24, 2024
Acceptance Date April 22, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Adetayo, M. (2025). Türkiye’s net zero plan: Mathematical analysis of emission and mitigation approaches. International Journal of Energy Studies, 10(2), 569-594. https://doi.org/10.58559/ijes.1572361
AMA Adetayo M. Türkiye’s net zero plan: Mathematical analysis of emission and mitigation approaches. Int J Energy Studies. June 2025;10(2):569-594. doi:10.58559/ijes.1572361
Chicago Adetayo, Mujeeb. “Türkiye’s Net Zero Plan: Mathematical Analysis of Emission and Mitigation Approaches”. International Journal of Energy Studies 10, no. 2 (June 2025): 569-94. https://doi.org/10.58559/ijes.1572361.
EndNote Adetayo M (June 1, 2025) Türkiye’s net zero plan: Mathematical analysis of emission and mitigation approaches. International Journal of Energy Studies 10 2 569–594.
IEEE M. Adetayo, “Türkiye’s net zero plan: Mathematical analysis of emission and mitigation approaches”, Int J Energy Studies, vol. 10, no. 2, pp. 569–594, 2025, doi: 10.58559/ijes.1572361.
ISNAD Adetayo, Mujeeb. “Türkiye’s Net Zero Plan: Mathematical Analysis of Emission and Mitigation Approaches”. International Journal of Energy Studies 10/2 (June2025), 569-594. https://doi.org/10.58559/ijes.1572361.
JAMA Adetayo M. Türkiye’s net zero plan: Mathematical analysis of emission and mitigation approaches. Int J Energy Studies. 2025;10:569–594.
MLA Adetayo, Mujeeb. “Türkiye’s Net Zero Plan: Mathematical Analysis of Emission and Mitigation Approaches”. International Journal of Energy Studies, vol. 10, no. 2, 2025, pp. 569-94, doi:10.58559/ijes.1572361.
Vancouver Adetayo M. Türkiye’s net zero plan: Mathematical analysis of emission and mitigation approaches. Int J Energy Studies. 2025;10(2):569-94.