Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 2, 52 - 70, 28.06.2019

Abstract

References

  • [1] Goldemberg, J. (Ed.). (2000). World Energy Assessment: Energy and the challenge of sustainability (pp. 1-29). New York^ eNY NY: United Nations Development Programme.[2] Rijksoverheid. Plan van Aanpak Energiebesparing Gebouwde Omgeving. February 02, 2011, Accessed January 15 2019. https://www.rijksoverheid.nl/documenten/rapporten/2011/02/25/plan-van-aanpak-energiebesparing-gebouwde-omgeving[3] Ahmad, N., & Wyckoff, A. (2003). Carbon dioxide emissions embodied in international trade of goods. OECD Science, technology and industry working papers, 15.[4] Lyngfelt, A., Leckner, B., & Mattisson, T. (2001). A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science, 56(10), 3101-3113.[5] Quintana, N., Van der Kooy, F., Van de Rhee, Miranda D., Voshol, Geben P., Verpoorte, R. (2011). Renewable Energy From Cyanobacteria: Energy Production Optimization By Metabolic Pathway Engineering. Appl Microbiol Biotechnol 91:471 – 490.[6] Reinhardt, G., Rettenmaier, N., & Köppen, S. (2008, April). How sustainable are biofuels for transportation. In Bioenergy: challenges and opportunities. International conference and exhibition on bioenergy.[7] Hossain, M.M., de Lasa, H.I., (2007). Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science 63 p: 4433—445.[8] Afgan NH, Carvalho MG (2002) Multi-criteria assessment of new and renewable energy power plants. Energy 27:739–755.[9] Hall DO, Moss PA (1983) Biomass for energy in developing countries. Geojournal 7(1):5–14.[10] Toklu, E., Güney, M. S., Işık, M., Comaklı, O., & Kaygusuz, K. (2010). Energy production, consumption, policies and recent developments in Turkey. Renewable and Sustainable Energy Reviews, 14(4), 1172-1186.[11] Hossain, A. B. M. S., & Salleh, A. (2008). Biodiesel fuel production from algae as renewable energy. American Journal of Biochemistry and Biotechnology, 4(3), 250 - 254.[12] Stephens, E., Ross, I. L., Mussgnug, J. H., Wagner, L. D., Borowitzka, M. A., Posten, C., Hankamer, B. (2010). Future prospects of microalgal biofuels production systems. Trends in Plant Sciences, 15, 554 - 564.[13] Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biological Conservation, 141, 2450 - 2460.[14] REN21 (2009) Globlal status report. Ren21 1–31
[15] Elrayies, G. M. (2018). Microalgae: prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81, 1175-1191.[16] Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306[17] Patil, V., Tran, K.Q. & Giselrød, H.R. (2008). Towards Sustainable Production of Biofuels from Microalgae. Int. J. Mol. Sci. , 9, 1188-1195[18] Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in biotechnology, 26(3), 126-131.[19] Brown, L. M., & Zeiler, K. G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Conversion and Management, 34(9-11), 1005-1013.[20] Qiu, F. (2014). Algae architecture [Master]. TU Delft: Delft University of Technology.[21] Algae." UXL Encyclopedia of Science. 2002. Encyclopedia.com. (January 5, 2016). http://www.encyclopedia.com/doc/1G2-3438100032.html[22] Hall, Jack. "The Most Important Organism? | Ecology Global Network." Ecology Global Network. September 12, 2011. Accessed February 11, 2019. http://www.ecology.com/2011/09/12/important-organism/.[23] Mark Edwards,“Algae 101: Algae Medical Solutions Part 1” algaeindustrymagazine.com, April 7, 2013. Accessed January 05, 2019. http://www.algaeindustrymagazine. com/algae–medical–solutions–part–1/[24] Oilgae, “About Algae,” oilgea.com, Dec. 17, 2013. Accessed December 25, 2018 http://www.oilgae. com/algae/algae.html
[25] Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232.[26] Wolkers, H., Barbosa, M. J., Kleinegris, D. M. M., Bosma, R., Wijffels, R. H., & Harmsen, P. F. H. (2011). Microalgae: the green gold of the future?: large-scale sustainable cultivation of microalgae for the production of bulk commodities. Wageningen UR-Food & Biobased Research.[27] Genin, S. N., Aitchison, J. S., & Allen, D. G. (2016). Photobioreactor-Based Energy Sources. In Nano and Biotech Based Materials for Energy Building Efficiency (pp. 429-455). Springer, Cham.[28] Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316-4342.[29] Suh, I.S. & Lee, C-G. (2003). Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering, Vol. 8, 313-321 53[30] Herman E.F, Anderson W. (1947) Control of algal growths in hatching ponds and raceways. The Progressive Fish-Culturist 9(4):211–212[31] Jimiénez, C., Cossio, B. R., Labella, D., & Xavier Niell, F. (2003). The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture, 217, 179 - 190.[32] Ugwu C.U, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028
[33] Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., ... & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy research, 1(1), 20-43.[34] Pulz, O. (2001). Photobiorectors: production systems for phototrophic microorganisms. Applied Microbiology Biotechnology, 57, 287 - 293.[35] Hemming, S., Sapounas, A., & Voogt, W. (2012). Algenteeltsystemen voor de tuinbouw - integratie. Wageningen: Wageningen UR[36] Conk Dalay, M., İmamoğlu, E. ve Öncel, S. (2008). Mikroalgal biyokütle üretimi için düşük maliyetli fotobiyoreaktör tasarımı. TÜBİTAK MAG, Proje No: 104M354. 19 Ekim 2014[37] Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and bioengineering, 102(1), 100-112.[38] Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Industrial & engineering chemistry research, 49(8), 3516-3526.[39] Shen, Y., Yuan, W., Pei, Z. J., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52(4), 1275-1287.[40] Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben-Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysis galbanna in open reactors.[41] Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89:157–163[42] Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18(6):811–826[43] Stuart C. & Hessami M-A. (2005). A study of methods of carbon dioxide capture and sequestration–the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management, Vol. 46, 403–420[44] Wencker T. (2011). Photobioreactor design principles, submariner project cooperation event: present and potential uses of algae, Trelleborg, Sweden,IGV-GmbH..[45] Bitog JP, Lee I-B, Lee C-G, Kim K-S, Hwang H-S, Hong S-W, Seo I-H, Kwon K-S, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobiore- actors for microalgae production: a review. Comput Electron Agric 76:131–147[46] Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912
[47] Öncel, S. Ş., Köse, A., & Öncel, D. Ş. (2016). Façade integrated photobioreactors for building energy efficiency. In Start-Up Creation (pp. 237-299). Woodhead Publishing.[48] Zijffers, J. W. F., Janssen, M., Tramper, J. ve Wijffels, R. H. (2008). Design process of an area-efficient photobioreactor. Marine Biotechnology, 10, 404-415. [49] Proksch G. (2013). Growing sustainability - integrating algae cultivation into the built 
environment. Edinb Archit Res J ;33(147):62. 
[50] Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of phototrophs. Biotechnol Bioeng 51:51–60[51] Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451[52] Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production–A review. Renewable and Sustainable Energy Reviews, 16(4), 2347-2353.[53] Zhang, X. (2015). Microalgae removal of CO2 from flue gas. IEA Clean Coal Centre, UK.[54] Xu, L., Weathers, P. J., Xiong, X. R., & Liu, C. Z. (2009). Microalgal bioreactors: challenges and opportunities. Engineering in Life Sciences, 9(3), 178-189.[55] Pruvost, J., Legendre, A., & Architects, X. T. U. SB13 Graz–Full Paper. SustainableBuilding Conference. Graz, Australia: Graz University of Technology, Austria; 26-28 September 2013.[56] Saint-Nazaire N. Microalgae nesting in building façades. (http://www.nantes-saintnazaire.fr)[57] Croze, O. A., Sardina, G., Ahmed, M., Bees, M. A., & Brandt, L. (2013). Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. Journal of The Royal Society Interface, 10(81), 20121041.[58] Vonshak, A., & Guy, R. (1992). Photoadaptation, photoinhibition and productivity in the blue‐green alga, Spirulina platensis grown outdoors. Plant, Cell & Environment, 15(5), 613-616.[59] Janssen, M., de Bresser, L., Baijens, T., Tramper, J., Mur, L. R., Snel, J. F., & Wijffels, R. H. (2000). Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. Journal of applied phycology, 12(3-5), 225-237.[60] Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae: a review. Renewable and Sustainable Energy Reviews, 27, 128-148.[61] Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1-3), 136-147.[62] Elnokaly, A., & Keeling, I. (2016). An empirical study investigating the impact of micro-algal technologies and their application within intelligent building fabrics. Procedia-Social and Behavioral Sciences, 216, 712-723.[63] IBA-Hamburg. Smart Material House-BIQ. Hamburg; July 2013.
Accessed December 17, 2018. https://www.iba-hamburg.de/fileadmin/Mediathek/Whitepaper/130716_White_Paper_BIQ_en.pdf[64] Marsullo, M., Mian, A., Ensinas, A. V., Manente, G., Lazzaretto, A., & Marechal, F. (2015). Dynamic modeling of the microalgae cultivation phase for energy production in open raceway ponds and flat panel photobioreactors. Frontiers in Energy Research, 3, 41.[65] Arsalane, W., Rousseau, B., & Duval, J. C. (1994). Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: competition between photoproteci'ion and photoinhibition. Photochemistry and photobiology, 60(3), 237-243.[66] Behrenfeld, M. J., Prasil, O., Kolber, Z. S., Babin, M., & Falkowski, P. G. (1998). Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynthesis Research, 58(3), 259-268.[67] Masojidek, J., Torzillo, G., Koblizek, M. (2013). Photosynthesis in microalgae. In: Richmond, A., Hu, Q. (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology Second Edition. Wiley, pp. 21e36. [68] Slegers, P. M. (2014). Scenario studies for algae production. Wageningen University.[69] Posten, C. (2009). Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165-177.[70] Biomass from Algae. (Available from: https://www.wacker.com/cms/en/100years/r_and_d/biomasse.jsp)[71] Chisti, Y., Molina, E., Fernandez, J., Acién, F.G., Tubular photobioreactor design for algal cultures, Journal of Biotechnology, 92, 113–131, (2000).
[72] 
Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332[73] Matthes, S., Matschke, M., Cotta, F., Grossmann, J., & Griehl, C. (2015). Reliable production of microalgae biomass using a novel microalgae platform. Journal of applied phycology, 27(5), 1755-1762.[74] Oncel, S. S., Kose, A., Vardar, F., & Torzillo, G. (2015). From the Ancient Tribes to Modern Societies, Microalgae Evolution from a Simple Food to an Alternative Fuel Source. In Handbook of Marine Microalgae (pp. 127-144). Academic Press.[75] Fernández, F. A., Camacho, F. G., & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. In Progress in industrial microbiology (Vol. 35, pp. 231-247). Elsevier.[76] Molina, E.; Fernandez, J.; Acien, F. G.; Chisti, Y. Tubular photobioreactor design for algal cultures. J. Biotechnol. 2001, 92 (2), 113– 131. [77] Li, J., Stamato, M., Velliou, E., Jeffryes, C., & Agathos, S. N. (2015). Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. Journal of applied phycology, 27(1), 75-86.[78] Chiu, S. Y., Tsai, M. T., Kao, C. Y., Ong, S. C., & Lin, C. S. (2009). The air‐lift photobioreactors with flow patterning for high‐density cultures of microalgae and carbon dioxide removal. Engineering in life sciences, 9(3), 254-260.[79] Chisti, Y. (1998). Pneumatically agitated bioreactors in industrial and environmental bioprocessing: hydrodynamics, hydraulics, and transport phenomena. Applied Mechanics Reviews, 51(1), 33-112.[80] Sevilla, J. F., Cerón García, M. C., Sánchez Mirón, A., Belarbi, E. H., Camacho, F. G., & Grima, E. M. (2004). Pilot‐plant‐scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed‐batch mode. Biotechnology progress, 20(3), 728-736.[81] Pires, J. C. (2017). COP21: The algae opportunity?. Renewable and Sustainable Energy Reviews, 79, 867-877.[82] Chisti, Y., & Moo-Young, M. (1994). Clean-in-place systems for industrial bioreactors: design, validation and operation. Journal of Industrial Microbiology, 13(4), 201-207.[83] Chisti, Y. (1999). Modern systems of plant cleaning. Encyclopedia of food microbiology, 3, 1806-1815.[84] Mirón, A. S., Gomez, A. C., Camacho, F. G., Grima, E. M., & Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In Progress in industrial microbiology (Vol. 35, pp. 249-270). Elsevier.[85] Masojídek, J. (2014) . “Mass Cultivation of Freshwater Microalgae.” Earth Systems and Environmental Sciences, no. June: 1–13.[86] Dauta, A., Devaux, J., Piquemal, F., & Boumnich, L. (1990). Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia, 207(1), 221-226.[87] Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., & Karube, I. (1992). Carbon dioxide fixation by a unicellular green alga Oocystis sp. Journal of biotechnology, 25(3), 261-267.[88] Blanken, W., Cuaresma, M., Wijffels, R. H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4), 333-340.[89] Hidaka, T., Inoue, K., Suzuki, Y., & Tsumori, J. (2014). Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage. Bioresource technology, 170, 83-89.[90] Junying, Z. H. U., Junfeng, R. O. N. G., & Baoning, Z. O. N. G. (2013). Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 34(1), 80-100.[91] Rashid, N., Rehman, M. S. U., Sadiq, M., Mahmood, T., & Han, J. I. (2014). Current status, issues and developments in microalgae derived biodiesel production. Renewable and Sustainable Energy Reviews, 40, 760-778.[92] Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource technology, 100(2), 833-838.[93] Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13-20.[94] Coutteau, P. (1996). Micro-algae. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper, 361, 7-48. [95] Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae bior- efinery: high value products perspectives. Bioresour Technol 2017;229:53–62. [96] Leung, D. Y., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied energy, 87(4), 1083-1095.[97] Elcik, H., & Çakmakcı, M. (2017). Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi. Journal of the Faculty of Engineering & Architecture of Gazi University, 32(3).[98] Bogias, P. (2014). Algae textile: a lightweight photobioreactor for urban buildings (Master's thesis, University of Waterloo).[99] Bell, S. G., & Codd, G. A. (1994). Cyanobacterial toxins and human health. Reviews in Medical Microbiology, 5(4), 256-264.[100] Wilkinson, S. J., Stoller, P., Ralph, P., & Hamdorf, B. (2016). Feasibility of Algae Building Technology in Sydney. Feasibility of Algae Building Technology in Sydney.[101] Solar Leaf Bioreactor Façade, Product Overview, 2013.https://www.coltinfo.co.uk/files/pdf/UK/SolarLeaf%20bioreactor%20facade.pdf

DEFINING THE PROBLEMS OF INTEGRATED ALGAE PHOTOBIOREACTOR SYSTEMS TO ARCHITECTURE

Year 2019, Volume: 3 Issue: 2, 52 - 70, 28.06.2019

Abstract

With CO2 absorption ability, waste water treatment quality, O2 production potential and lots of other organismal
features, as results of the extensive researches on microalgae it was understood that these organisms are the solution of
clean energy problems for the world in the next century.
The limited experience about using of microalgae photobioreactors in architecture requires
shedding light on some issues. So, this paper mainly
aims to explore the prob
lems of photobioreactor systems which are integrated in architectonics. For this purpose, this study will examine totally 10 algae
architecture projects. Microalgae photobioreactor
systems commonly used in
architecture in 3 different ways as building
integrated photobioreactors as a secondary facade, holistic urban approaches in
macro scale and individual installations. In the
scope of study, 4 projects in building scale, 3
projects in urban scale and 3 projects a a singular installation are selected.
The paper has concluded that the integration of algae to
the architecture encounters some challenges,
including the high initilal and operating cost,
additional load to the structural system, accordanceand
solidity to the weather conditions,
compatibility to the local climate, limitation of
view for the residents need for high space
requirements for storage and operating systems and supplying limitations to the
common infrastructure of the zone. With identifying this lookouts, this study provides an evaluation method to appreciate and take
attention when the photobioreactor systems are applied in architecture. Besides
that, using algae in architecture has brought many benefits like energy saving,
CO
2 emission reductions, O2 release, biofuel production,
wastewater treatment from micro scale by using building facades and macro scale
by integrating to the cities. The unrivalled benefits of the algae
photobioreactor systems through the combination of the technical and biological
and chemical cycles within architecture commence an
innovative approach to renewable energy architecture by integrating
environmentalist architectural design values and will shed light on future
studies.

References

  • [1] Goldemberg, J. (Ed.). (2000). World Energy Assessment: Energy and the challenge of sustainability (pp. 1-29). New York^ eNY NY: United Nations Development Programme.[2] Rijksoverheid. Plan van Aanpak Energiebesparing Gebouwde Omgeving. February 02, 2011, Accessed January 15 2019. https://www.rijksoverheid.nl/documenten/rapporten/2011/02/25/plan-van-aanpak-energiebesparing-gebouwde-omgeving[3] Ahmad, N., & Wyckoff, A. (2003). Carbon dioxide emissions embodied in international trade of goods. OECD Science, technology and industry working papers, 15.[4] Lyngfelt, A., Leckner, B., & Mattisson, T. (2001). A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chemical Engineering Science, 56(10), 3101-3113.[5] Quintana, N., Van der Kooy, F., Van de Rhee, Miranda D., Voshol, Geben P., Verpoorte, R. (2011). Renewable Energy From Cyanobacteria: Energy Production Optimization By Metabolic Pathway Engineering. Appl Microbiol Biotechnol 91:471 – 490.[6] Reinhardt, G., Rettenmaier, N., & Köppen, S. (2008, April). How sustainable are biofuels for transportation. In Bioenergy: challenges and opportunities. International conference and exhibition on bioenergy.[7] Hossain, M.M., de Lasa, H.I., (2007). Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science 63 p: 4433—445.[8] Afgan NH, Carvalho MG (2002) Multi-criteria assessment of new and renewable energy power plants. Energy 27:739–755.[9] Hall DO, Moss PA (1983) Biomass for energy in developing countries. Geojournal 7(1):5–14.[10] Toklu, E., Güney, M. S., Işık, M., Comaklı, O., & Kaygusuz, K. (2010). Energy production, consumption, policies and recent developments in Turkey. Renewable and Sustainable Energy Reviews, 14(4), 1172-1186.[11] Hossain, A. B. M. S., & Salleh, A. (2008). Biodiesel fuel production from algae as renewable energy. American Journal of Biochemistry and Biotechnology, 4(3), 250 - 254.[12] Stephens, E., Ross, I. L., Mussgnug, J. H., Wagner, L. D., Borowitzka, M. A., Posten, C., Hankamer, B. (2010). Future prospects of microalgal biofuels production systems. Trends in Plant Sciences, 15, 554 - 564.[13] Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: understanding the conflicts and finding opportunities. Biological Conservation, 141, 2450 - 2460.[14] REN21 (2009) Globlal status report. Ren21 1–31
[15] Elrayies, G. M. (2018). Microalgae: prospects for greener future buildings. Renewable and Sustainable Energy Reviews, 81, 1175-1191.[16] Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306[17] Patil, V., Tran, K.Q. & Giselrød, H.R. (2008). Towards Sustainable Production of Biofuels from Microalgae. Int. J. Mol. Sci. , 9, 1188-1195[18] Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in biotechnology, 26(3), 126-131.[19] Brown, L. M., & Zeiler, K. G. (1993). Aquatic biomass and carbon dioxide trapping. Energy Conversion and Management, 34(9-11), 1005-1013.[20] Qiu, F. (2014). Algae architecture [Master]. TU Delft: Delft University of Technology.[21] Algae." UXL Encyclopedia of Science. 2002. Encyclopedia.com. (January 5, 2016). http://www.encyclopedia.com/doc/1G2-3438100032.html[22] Hall, Jack. "The Most Important Organism? | Ecology Global Network." Ecology Global Network. September 12, 2011. Accessed February 11, 2019. http://www.ecology.com/2011/09/12/important-organism/.[23] Mark Edwards,“Algae 101: Algae Medical Solutions Part 1” algaeindustrymagazine.com, April 7, 2013. Accessed January 05, 2019. http://www.algaeindustrymagazine. com/algae–medical–solutions–part–1/[24] Oilgae, “About Algae,” oilgea.com, Dec. 17, 2013. Accessed December 25, 2018 http://www.oilgae. com/algae/algae.html
[25] Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews, 14(1), 217-232.[26] Wolkers, H., Barbosa, M. J., Kleinegris, D. M. M., Bosma, R., Wijffels, R. H., & Harmsen, P. F. H. (2011). Microalgae: the green gold of the future?: large-scale sustainable cultivation of microalgae for the production of bulk commodities. Wageningen UR-Food & Biobased Research.[27] Genin, S. N., Aitchison, J. S., & Allen, D. G. (2016). Photobioreactor-Based Energy Sources. In Nano and Biotech Based Materials for Energy Building Efficiency (pp. 429-455). Springer, Cham.[28] Suali, E., & Sarbatly, R. (2012). Conversion of microalgae to biofuel. Renewable and Sustainable Energy Reviews, 16(6), 4316-4342.[29] Suh, I.S. & Lee, C-G. (2003). Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering, Vol. 8, 313-321 53[30] Herman E.F, Anderson W. (1947) Control of algal growths in hatching ponds and raceways. The Progressive Fish-Culturist 9(4):211–212[31] Jimiénez, C., Cossio, B. R., Labella, D., & Xavier Niell, F. (2003). The feasibility of industrial production of Spirulina (Arthrospira) in southern Spain. Aquaculture, 217, 179 - 190.[32] Ugwu C.U, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028
[33] Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., ... & Hankamer, B. (2008). Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy research, 1(1), 20-43.[34] Pulz, O. (2001). Photobiorectors: production systems for phototrophic microorganisms. Applied Microbiology Biotechnology, 57, 287 - 293.[35] Hemming, S., Sapounas, A., & Voogt, W. (2012). Algenteeltsystemen voor de tuinbouw - integratie. Wageningen: Wageningen UR[36] Conk Dalay, M., İmamoğlu, E. ve Öncel, S. (2008). Mikroalgal biyokütle üretimi için düşük maliyetli fotobiyoreaktör tasarımı. TÜBİTAK MAG, Proje No: 104M354. 19 Ekim 2014[37] Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low‐cost photobioreactor. Biotechnology and bioengineering, 102(1), 100-112.[38] Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuel production from microalgae. Industrial & engineering chemistry research, 49(8), 3516-3526.[39] Shen, Y., Yuan, W., Pei, Z. J., Wu, Q., & Mao, E. (2009). Microalgae mass production methods. Transactions of the ASABE, 52(4), 1275-1287.[40] Boussiba S, Sandbank E, Shelef G, Cohen Z, Vonshak A, Ben-Amotz A, Arad S, Richmond A (1988) Outdoor cultivation of the marine microalga Isochrysis galbanna in open reactors.[41] Hase R, Oikawa H, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai City. J Biosci Bioeng 89:157–163[42] Doucha J, Livansky K (2006) Productivity, CO2/O2 exchange and hydraulics in outdoor open high density microalgal (Chlorella sp.) photobioreactors operated in a middle and southern European climate. J Appl Phycol 18(6):811–826[43] Stuart C. & Hessami M-A. (2005). A study of methods of carbon dioxide capture and sequestration–the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management, Vol. 46, 403–420[44] Wencker T. (2011). Photobioreactor design principles, submariner project cooperation event: present and potential uses of algae, Trelleborg, Sweden,IGV-GmbH..[45] Bitog JP, Lee I-B, Lee C-G, Kim K-S, Hwang H-S, Hong S-W, Seo I-H, Kwon K-S, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobiore- actors for microalgae production: a review. Comput Electron Agric 76:131–147[46] Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912
[47] Öncel, S. Ş., Köse, A., & Öncel, D. Ş. (2016). Façade integrated photobioreactors for building energy efficiency. In Start-Up Creation (pp. 237-299). Woodhead Publishing.[48] Zijffers, J. W. F., Janssen, M., Tramper, J. ve Wijffels, R. H. (2008). Design process of an area-efficient photobioreactor. Marine Biotechnology, 10, 404-415. [49] Proksch G. (2013). Growing sustainability - integrating algae cultivation into the built 
environment. Edinb Archit Res J ;33(147):62. 
[50] Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor for outdoor mass cultivation of phototrophs. Biotechnol Bioeng 51:51–60[51] Richmond A (2000) Microalgal biotechnology at the turn of the millennium: a personal view. J Appl Phycol 12:441–451[52] Singh, R. N., & Sharma, S. (2012). Development of suitable photobioreactor for algae production–A review. Renewable and Sustainable Energy Reviews, 16(4), 2347-2353.[53] Zhang, X. (2015). Microalgae removal of CO2 from flue gas. IEA Clean Coal Centre, UK.[54] Xu, L., Weathers, P. J., Xiong, X. R., & Liu, C. Z. (2009). Microalgal bioreactors: challenges and opportunities. Engineering in Life Sciences, 9(3), 178-189.[55] Pruvost, J., Legendre, A., & Architects, X. T. U. SB13 Graz–Full Paper. SustainableBuilding Conference. Graz, Australia: Graz University of Technology, Austria; 26-28 September 2013.[56] Saint-Nazaire N. Microalgae nesting in building façades. (http://www.nantes-saintnazaire.fr)[57] Croze, O. A., Sardina, G., Ahmed, M., Bees, M. A., & Brandt, L. (2013). Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors. Journal of The Royal Society Interface, 10(81), 20121041.[58] Vonshak, A., & Guy, R. (1992). Photoadaptation, photoinhibition and productivity in the blue‐green alga, Spirulina platensis grown outdoors. Plant, Cell & Environment, 15(5), 613-616.[59] Janssen, M., de Bresser, L., Baijens, T., Tramper, J., Mur, L. R., Snel, J. F., & Wijffels, R. H. (2000). Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. Journal of applied phycology, 12(3-5), 225-237.[60] Bahadar, A., & Khan, M. B. (2013). Progress in energy from microalgae: a review. Renewable and Sustainable Energy Reviews, 27, 128-148.[61] Sierra, E., Acién, F. G., Fernández, J. M., García, J. L., González, C., & Molina, E. (2008). Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 138(1-3), 136-147.[62] Elnokaly, A., & Keeling, I. (2016). An empirical study investigating the impact of micro-algal technologies and their application within intelligent building fabrics. Procedia-Social and Behavioral Sciences, 216, 712-723.[63] IBA-Hamburg. Smart Material House-BIQ. Hamburg; July 2013.
Accessed December 17, 2018. https://www.iba-hamburg.de/fileadmin/Mediathek/Whitepaper/130716_White_Paper_BIQ_en.pdf[64] Marsullo, M., Mian, A., Ensinas, A. V., Manente, G., Lazzaretto, A., & Marechal, F. (2015). Dynamic modeling of the microalgae cultivation phase for energy production in open raceway ponds and flat panel photobioreactors. Frontiers in Energy Research, 3, 41.[65] Arsalane, W., Rousseau, B., & Duval, J. C. (1994). Influence of the pool size of the xanthophyll cycle on the effects of light stress in a diatom: competition between photoproteci'ion and photoinhibition. Photochemistry and photobiology, 60(3), 237-243.[66] Behrenfeld, M. J., Prasil, O., Kolber, Z. S., Babin, M., & Falkowski, P. G. (1998). Compensatory changes in photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynthesis Research, 58(3), 259-268.[67] Masojidek, J., Torzillo, G., Koblizek, M. (2013). Photosynthesis in microalgae. In: Richmond, A., Hu, Q. (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology Second Edition. Wiley, pp. 21e36. [68] Slegers, P. M. (2014). Scenario studies for algae production. Wageningen University.[69] Posten, C. (2009). Design principles of photo‐bioreactors for cultivation of microalgae. Engineering in Life Sciences, 9(3), 165-177.[70] Biomass from Algae. (Available from: https://www.wacker.com/cms/en/100years/r_and_d/biomasse.jsp)[71] Chisti, Y., Molina, E., Fernandez, J., Acién, F.G., Tubular photobioreactor design for algal cultures, Journal of Biotechnology, 92, 113–131, (2000).
[72] 
Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332[73] Matthes, S., Matschke, M., Cotta, F., Grossmann, J., & Griehl, C. (2015). Reliable production of microalgae biomass using a novel microalgae platform. Journal of applied phycology, 27(5), 1755-1762.[74] Oncel, S. S., Kose, A., Vardar, F., & Torzillo, G. (2015). From the Ancient Tribes to Modern Societies, Microalgae Evolution from a Simple Food to an Alternative Fuel Source. In Handbook of Marine Microalgae (pp. 127-144). Academic Press.[75] Fernández, F. A., Camacho, F. G., & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. In Progress in industrial microbiology (Vol. 35, pp. 231-247). Elsevier.[76] Molina, E.; Fernandez, J.; Acien, F. G.; Chisti, Y. Tubular photobioreactor design for algal cultures. J. Biotechnol. 2001, 92 (2), 113– 131. [77] Li, J., Stamato, M., Velliou, E., Jeffryes, C., & Agathos, S. N. (2015). Design and characterization of a scalable airlift flat panel photobioreactor for microalgae cultivation. Journal of applied phycology, 27(1), 75-86.[78] Chiu, S. Y., Tsai, M. T., Kao, C. Y., Ong, S. C., & Lin, C. S. (2009). The air‐lift photobioreactors with flow patterning for high‐density cultures of microalgae and carbon dioxide removal. Engineering in life sciences, 9(3), 254-260.[79] Chisti, Y. (1998). Pneumatically agitated bioreactors in industrial and environmental bioprocessing: hydrodynamics, hydraulics, and transport phenomena. Applied Mechanics Reviews, 51(1), 33-112.[80] Sevilla, J. F., Cerón García, M. C., Sánchez Mirón, A., Belarbi, E. H., Camacho, F. G., & Grima, E. M. (2004). Pilot‐plant‐scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed‐batch mode. Biotechnology progress, 20(3), 728-736.[81] Pires, J. C. (2017). COP21: The algae opportunity?. Renewable and Sustainable Energy Reviews, 79, 867-877.[82] Chisti, Y., & Moo-Young, M. (1994). Clean-in-place systems for industrial bioreactors: design, validation and operation. Journal of Industrial Microbiology, 13(4), 201-207.[83] Chisti, Y. (1999). Modern systems of plant cleaning. Encyclopedia of food microbiology, 3, 1806-1815.[84] Mirón, A. S., Gomez, A. C., Camacho, F. G., Grima, E. M., & Chisti, Y. (1999). Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. In Progress in industrial microbiology (Vol. 35, pp. 249-270). Elsevier.[85] Masojídek, J. (2014) . “Mass Cultivation of Freshwater Microalgae.” Earth Systems and Environmental Sciences, no. June: 1–13.[86] Dauta, A., Devaux, J., Piquemal, F., & Boumnich, L. (1990). Growth rate of four freshwater algae in relation to light and temperature. Hydrobiologia, 207(1), 221-226.[87] Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., & Karube, I. (1992). Carbon dioxide fixation by a unicellular green alga Oocystis sp. Journal of biotechnology, 25(3), 261-267.[88] Blanken, W., Cuaresma, M., Wijffels, R. H., & Janssen, M. (2013). Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2(4), 333-340.[89] Hidaka, T., Inoue, K., Suzuki, Y., & Tsumori, J. (2014). Growth and anaerobic digestion characteristics of microalgae cultivated using various types of sewage. Bioresource technology, 170, 83-89.[90] Junying, Z. H. U., Junfeng, R. O. N. G., & Baoning, Z. O. N. G. (2013). Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 34(1), 80-100.[91] Rashid, N., Rehman, M. S. U., Sadiq, M., Mahmood, T., & Han, J. I. (2014). Current status, issues and developments in microalgae derived biodiesel production. Renewable and Sustainable Energy Reviews, 40, 760-778.[92] Chiu, S. Y., Kao, C. Y., Tsai, M. T., Ong, S. C., Chen, C. H., & Lin, C. S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource technology, 100(2), 833-838.[93] Widjaja, A., Chien, C. C., & Ju, Y. H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers, 40(1), 13-20.[94] Coutteau, P. (1996). Micro-algae. Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper, 361, 7-48. [95] Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae bior- efinery: high value products perspectives. Bioresour Technol 2017;229:53–62. [96] Leung, D. Y., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied energy, 87(4), 1083-1095.[97] Elcik, H., & Çakmakcı, M. (2017). Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi. Journal of the Faculty of Engineering & Architecture of Gazi University, 32(3).[98] Bogias, P. (2014). Algae textile: a lightweight photobioreactor for urban buildings (Master's thesis, University of Waterloo).[99] Bell, S. G., & Codd, G. A. (1994). Cyanobacterial toxins and human health. Reviews in Medical Microbiology, 5(4), 256-264.[100] Wilkinson, S. J., Stoller, P., Ralph, P., & Hamdorf, B. (2016). Feasibility of Algae Building Technology in Sydney. Feasibility of Algae Building Technology in Sydney.[101] Solar Leaf Bioreactor Façade, Product Overview, 2013.https://www.coltinfo.co.uk/files/pdf/UK/SolarLeaf%20bioreactor%20facade.pdf
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Funda Öztürk Kerestecioğlu This is me

Yunus Turan Pekmezci 0000-0003-2031-7200

Publication Date June 28, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

IEEE F. Öztürk Kerestecioğlu and Y. T. Pekmezci, “DEFINING THE PROBLEMS OF INTEGRATED ALGAE PHOTOBIOREACTOR SYSTEMS TO ARCHITECTURE”, IJESA, vol. 3, no. 2, pp. 52–70, 2019.

ISSN 2548-1185
e-ISSN 2587-2176
Period: Quarterly
Founded: 2016
Publisher: Nisantasi University
e-mail:ilhcol@gmail.com