Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 1, 8 - 15, 30.03.2023

Abstract

References

  • [1] J. J. Grainger and W. D. Stevenson JR, Power System Analysis. McGraw-Hill.
  • [2] H. A. Brantsæter, ‘Harmonic Resonance Mode Analysis and Application for Offshore Wind Power Plants’, p. 112.
  • [3] C. Medina, C. R. M. Ana, and G. González, ‘Transmission Grids to Foster High Penetration of Large-Scale Variable Renewable Energy Sources – A Review of Challenges, Problems, and Solutions’, IJRER, no. Vol12No1, 2022, doi: 10.20508/ijrer.v12i1.12738.g8400.
  • [4] ‘Network modelling for harmonic studies’, p. 241.
  • [5] L. Yang, Z. Xu, L. Feng, Z. Zhang, Z. Xu, and F. Xing, ‘Analysis on Harmonic Resonance of Offshore Wind Farm Transmitted by MMC-HVDC System’, in 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, May 2019, pp. 2296–2301. doi: 10.1109/ISGT-Asia.2019.8881373.
  • [6] Y. Zhang, C. Klabunde, and M. Wolter, ‘Harmonic Resonance Analysis for DFIG-based Offshore Wind Farm with VSC-HVDC Connection’, in 2019 IEEE Milan PowerTech, Milan, Italy, Jun. 2019, pp. 1–6. doi: 10.1109/PTC.2019.8810495.
  • [7] M. Cheah-Mane, L. Sainz, E. Prieto-Araujo, and O. Gomis-Bellmunt, ‘Impedance-based analysis of harmonic instabilities in HVDC-connected Offshore Wind Power Plants’, International Journal of Electrical Power & Energy Systems, vol. 106, pp. 420–431, Mar. 2019, doi: 10.1016/j.ijepes.2018.10.031.
  • [8] M. Quester, V. Yellisetti, F. Loku, and R. Puffer, ‘Assessing the Impact of Offshore Wind Farm Grid Configuration on Harmonic Stability’, in 2019 IEEE Milan PowerTech, Milan, Italy, Jun. 2019, pp. 1–6. doi: 10.1109/PTC.2019.8810843.
  • [9] P. Eguía, G. Gil, R. RodrÍguez-Sanchez, M. Haro-Larrode, and A. Gil de Muro, ‘Characterization of network harmonic impedance for grid connection studies of renewable plants’, REPQJ, vol. 1, pp. 686–691, Apr. 2018, doi: 10.24084/repqj16.434.
  • [10] L. Depla, ‘Harmonic Interactions in HVAC-Connected Offshore Windfarms’, Master in Engineering, Universitat Polit`ecnica de Catalunya, 2019.
  • [11] S. K. Chaudhary et al., ‘Harmonic Analysis and Active Filtering in Offshore Wind Power Plants’, p. 6.
  • [12] K. N. B. Md. Hasan, K. Rauma, A. Luna, J. I. Candela, and P. Rodriguez, ‘Harmonic Compensation Analysis in Offshore Wind Power Plants Using Hybrid Filters’, IEEE Trans. on Ind. Applicat., vol. 50, no. 3, pp. 2050–2060, May 2014, doi: 10.1109/TIA.2013.2286216.
  • [13] C. F. Jensen, ‘Harmonic background amplification in long asymmetrical high voltage cable systems’, Electric Power Systems Research, vol. 160, pp. 292–299, Jul. 2018, doi: 10.1016/j.epsr.2018.03.009.
  • [14] E. Caceoğlu, H. K. Yildiz, E. Oğuz, N. Huvaj, and J. M. Guerrero, ‘Offshore wind power plant site selection using Analytical Hierarchy Process for Northwest Turkey’, Ocean Engineering, vol. 252, p. 111178, May 2022, doi: 10.1016/j.oceaneng.2022.111178.
  • [15] S. A. Papathanassiou and M. P. Papadopoulos, ‘Harmonic Analysis in a Power System with Wind Generation’, IEEE Trans. Power Delivery, vol. 21, no. 4, pp. 2006–2016, Oct. 2006, doi: 10.1109/TPWRD.2005.864063.
  • [16] I. A. Aristi, ‘Switching overvoltages in off- shore wind power grids.’, p. 451, 2011.
  • [17] A. M. Meinich, ‘Harmonic Propagation and Production in Offshore Wind Farms’, p. 104.
  • [18] Ł. H. Kocewiak, I. A. Aristi, B. Gustavsen, and A. Hołdyk, ‘Modelling of wind power plant transmission system for harmonic propagation and small‐signal stability studies’, IET Renewable Power Generation, vol. 13, no. 5, pp. 717–724, Apr. 2019, doi: 10.1049/iet-rpg.2018.5077.
  • [19] C. F. Flytkær, ‘Power System Component Harmonic Modelling’. Harmonics in Power Electronics and Power Systems, 29-31 October.

A Novel Approach to Develop Grid Harmonic Model for Large-Scale Offshore WPP Integration to Turkey: A before-connection analysis for Northwest Turkey

Year 2023, Volume: 7 Issue: 1, 8 - 15, 30.03.2023

Abstract

Turkey has shown a lot of interest in renewable energy in recent decades. In Turkey today, there is a tremendous amount of power produced by wind power plants (WPPs). Large-scale offshore wind power plants (OWPPs) can be a solution to reduce the demand for electricity, keeping in mind that Turkey's installed wind power capacity is primarily from onshore stations. Due to its high wind speed capacity, the northwest of Turkey may be a suitable choice for a future OWPP installation. Large-scale OWPP connections in the area not only help to meet the region's energy needs, but they also provide advantages for the stability of the grid. However, the integration of such a large-scale power plant might cause serious harmonic stability issues. Although the system operator adopts and effectively utilizes a comprehensive model of the Turkish transmission grid, there is no harmonic equivalent model of the transmission network, which is essential for harmonic assessments. In this study, an equivalent harmonic model for harmonic impedance analysis of a proposed large-scale OWPP connection to Trakya, northwest Turkey, has been constructed. A thorough model of the Trakya region is first created in order to determine the grid's essential resonance locations, and the remaining grid (beyond the two straits) is then represented using harmonic equivalents. Following these arrangements, the driving point and transfer impedances at three Point of Connection (PoC) busbars are calculated to create a harmonic bus impedance matrix. Utilizing the software DigSilent Power Factory, whole modelling and analysis procedure was performed.

References

  • [1] J. J. Grainger and W. D. Stevenson JR, Power System Analysis. McGraw-Hill.
  • [2] H. A. Brantsæter, ‘Harmonic Resonance Mode Analysis and Application for Offshore Wind Power Plants’, p. 112.
  • [3] C. Medina, C. R. M. Ana, and G. González, ‘Transmission Grids to Foster High Penetration of Large-Scale Variable Renewable Energy Sources – A Review of Challenges, Problems, and Solutions’, IJRER, no. Vol12No1, 2022, doi: 10.20508/ijrer.v12i1.12738.g8400.
  • [4] ‘Network modelling for harmonic studies’, p. 241.
  • [5] L. Yang, Z. Xu, L. Feng, Z. Zhang, Z. Xu, and F. Xing, ‘Analysis on Harmonic Resonance of Offshore Wind Farm Transmitted by MMC-HVDC System’, in 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, May 2019, pp. 2296–2301. doi: 10.1109/ISGT-Asia.2019.8881373.
  • [6] Y. Zhang, C. Klabunde, and M. Wolter, ‘Harmonic Resonance Analysis for DFIG-based Offshore Wind Farm with VSC-HVDC Connection’, in 2019 IEEE Milan PowerTech, Milan, Italy, Jun. 2019, pp. 1–6. doi: 10.1109/PTC.2019.8810495.
  • [7] M. Cheah-Mane, L. Sainz, E. Prieto-Araujo, and O. Gomis-Bellmunt, ‘Impedance-based analysis of harmonic instabilities in HVDC-connected Offshore Wind Power Plants’, International Journal of Electrical Power & Energy Systems, vol. 106, pp. 420–431, Mar. 2019, doi: 10.1016/j.ijepes.2018.10.031.
  • [8] M. Quester, V. Yellisetti, F. Loku, and R. Puffer, ‘Assessing the Impact of Offshore Wind Farm Grid Configuration on Harmonic Stability’, in 2019 IEEE Milan PowerTech, Milan, Italy, Jun. 2019, pp. 1–6. doi: 10.1109/PTC.2019.8810843.
  • [9] P. Eguía, G. Gil, R. RodrÍguez-Sanchez, M. Haro-Larrode, and A. Gil de Muro, ‘Characterization of network harmonic impedance for grid connection studies of renewable plants’, REPQJ, vol. 1, pp. 686–691, Apr. 2018, doi: 10.24084/repqj16.434.
  • [10] L. Depla, ‘Harmonic Interactions in HVAC-Connected Offshore Windfarms’, Master in Engineering, Universitat Polit`ecnica de Catalunya, 2019.
  • [11] S. K. Chaudhary et al., ‘Harmonic Analysis and Active Filtering in Offshore Wind Power Plants’, p. 6.
  • [12] K. N. B. Md. Hasan, K. Rauma, A. Luna, J. I. Candela, and P. Rodriguez, ‘Harmonic Compensation Analysis in Offshore Wind Power Plants Using Hybrid Filters’, IEEE Trans. on Ind. Applicat., vol. 50, no. 3, pp. 2050–2060, May 2014, doi: 10.1109/TIA.2013.2286216.
  • [13] C. F. Jensen, ‘Harmonic background amplification in long asymmetrical high voltage cable systems’, Electric Power Systems Research, vol. 160, pp. 292–299, Jul. 2018, doi: 10.1016/j.epsr.2018.03.009.
  • [14] E. Caceoğlu, H. K. Yildiz, E. Oğuz, N. Huvaj, and J. M. Guerrero, ‘Offshore wind power plant site selection using Analytical Hierarchy Process for Northwest Turkey’, Ocean Engineering, vol. 252, p. 111178, May 2022, doi: 10.1016/j.oceaneng.2022.111178.
  • [15] S. A. Papathanassiou and M. P. Papadopoulos, ‘Harmonic Analysis in a Power System with Wind Generation’, IEEE Trans. Power Delivery, vol. 21, no. 4, pp. 2006–2016, Oct. 2006, doi: 10.1109/TPWRD.2005.864063.
  • [16] I. A. Aristi, ‘Switching overvoltages in off- shore wind power grids.’, p. 451, 2011.
  • [17] A. M. Meinich, ‘Harmonic Propagation and Production in Offshore Wind Farms’, p. 104.
  • [18] Ł. H. Kocewiak, I. A. Aristi, B. Gustavsen, and A. Hołdyk, ‘Modelling of wind power plant transmission system for harmonic propagation and small‐signal stability studies’, IET Renewable Power Generation, vol. 13, no. 5, pp. 717–724, Apr. 2019, doi: 10.1049/iet-rpg.2018.5077.
  • [19] C. F. Flytkær, ‘Power System Component Harmonic Modelling’. Harmonics in Power Electronics and Power Systems, 29-31 October.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Şehri Nur Güler 0000-0002-3132-3668

Kamil Çağatay Bayındır 0000-0002-9413-5162

Adnan Tan 0000-0002-5227-2556

Publication Date March 30, 2023
Published in Issue Year 2023 Volume: 7 Issue: 1

Cite

IEEE Ş. N. Güler, K. Ç. Bayındır, and A. Tan, “A Novel Approach to Develop Grid Harmonic Model for Large-Scale Offshore WPP Integration to Turkey: A before-connection analysis for Northwest Turkey”, IJESA, vol. 7, no. 1, pp. 8–15, 2023.

ISSN 2548-1185
e-ISSN 2587-2176
Period: Quarterly
Founded: 2016
Publisher: Nisantasi University
e-mail:ilhcol@gmail.com