Research Article
BibTex RIS Cite
Year 2019, Volume: 5 Issue: 1, 7 - 16, 01.04.2019

Abstract

References

  • [1] Awadhiya, D. & Kumar V. V. (2016). Crosslinking of agarose bioplastic using citric acid. Carbohydrate Polymers, 151, 60-67.
  • [2] Rohrbecka, M., Körstena, S., Fischera, C. B., Wehnera, S. & Kessler, B. (2013). Diamond like carbon coating of a pure bioplastic foil. Thin Solid Films, 545, 558- 563.
  • [3] Piemonte, V. (2011). Bioplastic Wastes: The best final disposition for energy saving. Journal of Polymers and the Environment, 19, 988–994.
  • [4] Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., Song, H., Kim, K. H., Kwon, E. E. & Jeon, Y. J., (2019). Production of bioplastic through food waste valorization. Environment International, 127, 625-644.
  • [5] Yadav, B., Pandey, A., Kumar, L. R. & Tyagi, R. D. (2020). Bioconversion of waste (water)/residues to bioplastics-A circular bioeconomy approach. Bioresource Technology, 298, 122584.
  • [6] Kalia, V. C., Raizada, N. & Sonakya, V. (2000). Bioplastics. Journal of Scientific and Industrial Research, 59, 433-445.
  • [7] Anonymous, 2004. Environmental product declaration of Mater-Bi NF07U. Novamont, Italy. http://bio4eu.jrc. ec.europa.eu/documents/e_epd102.pdf. (Date Accessed: 12.06.2020)
  • [8] Wu, C. S. (2011). Characterization and biodegradability of polyester bioplastic based green renewable composites from agricultural residues. Polymer Degradation and Stability, 97(1), 64-71.
  • Harding, K. G., Dennis, J. S., Blottnitz, H. V. & Harrison, S. T. L., (2007). Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically based poly- β-hydroxybutyric acid using life cycle assessment. Journal of Biotechnology, 130, 57–66.
  • [10] Gironi, F. & Piemonte, V. (2011). Bioplastics and petroleum-based plastics: Strengths and Weaknesses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(21), 1949-1959.
  • [11] Yamada, M., Morimitsu, S., Hosono, E. & Yamada, T. (2020). Preparation of bioplastic using soy protein. International Journal of Biological Macromolecules, 149, 1077-1083.
  • [12] Accinelli, C., Sacca, M. L., Mencarelli, M. & Vicari, A. (2012). Application of bioplastic moving bed bio-film carriers for the removal of synthetic pollutants from wastewater. Bioresource Technology, 120, 180-186.
  • [13] Peelman, N., Ragaert, P., Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Impe, V. F. & Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science and Technology, 32(2), 128-141.
  • [14] Zhao, Xi., Ji, K., Kurt, K., Cornish, K. & Vodovotz, Y. (2019). Optimal mechanical properties of biodegradable natural rubber toughened PHBV bioplastics intended for food packaging applications. Food Packaging and Shelf Life, 21, 100348.
  • [15] Siracusa, V., Rocculi, P., Romani, S. & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science and Technology, 19(12), 634-643.
  • [16] Berthet, M. A., Coussey, H. A., Chea, V., Guillard, V., Gastaldi, E. & Gontard N. (2015). Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV based composites properties. Composites Part A, Applied Science and Manufacturing, 72, 139-147.
  • [17] Takma, D. K. & Nadeem, H. Ş. (2019). Gıdalarda akıllı ambalajlama teknolojisi ve güncel uygulamalar. The Journal of food. 44(1), 131-142.
  • [18] Yu, H., Yan, C. & Yao, J. (2014). Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly (3-hydroxybutyrate-co- 3-hydroxyvalerate) nanocomposites. RSC Advances, 104, 59792-59802.
  • [19] Phromma, W., & Magaraphan, R. (2018). Fabrication of admicelled natural rubber by polycaprolactone for toughening poly (lactic acid). Journal of Polymers and the Environment, 26(6), 2268-2280.
  • [20] Luengo, J. M., Garcı́a, B., Sandoval, A., Naharro G. & Olivera E. R. (2003). Bioplastics from microorganisms. Current Opinion in Microbiology, 6(3), 251-260.
  • [21] Ravindran, R. & Jaiswal, A.K. (2016). Exploitation of food industry waste for high value products. Trends in Biotechnology, 34(1), 58-69.
  • [22] Pfaltzgraff, L. A., Bruyn, M., Cooper, E. C., Budarin, V. & Clark J. H. (2013). Food waste biomass: a resource for high value chemicals. Green Chemistry, 15(2), 307- 314.
  • [23] Krochta, J. M. & Mulder-Johnson, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technology, 61
  • [24] Kaplan, D. L., Hocking, P. J. & Marchessault, R. H. (1998). Polyhydroxyalkanoates. Biopolymers from Renewable Resources, 220-248
  • [25] Martin, O. & Averous, L. (2001). Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymers, 42(14), 6209-6219.
  • [26] Yang, L. & Paulson, A. T. (2000). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International, 33(7), 571- 578.
  • [27] Barron, C., Varoquaux, P., Guilbert, S., Gontard, N. & Gouble, B. (2002). Modified atmosphere packaging of cultivated mushroom (Agaricus bisporus L.) with hydrophilic films. Journal of Food Science, 67(1), 251-255.
  • [28] Suman, S. P., Mancini, R. A, Joseph, P., Ramanathan, R., Konda, M. K. R., Dady, G. & Yin, S., (2010). Packaging specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef. Meat Science, 86(4), 994-998.
  • [29] Koller, M., Marsalek, L., Mirandade, M., Dias S. & Braunegg G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38.
  • [30] Serafim, L. S., Lemos, P. C., Albuquerque, M. G. E. & Reis, M. A. M. (2008). Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol, 81, 615-628.
  • [31] Koch, D. R. & Mihalyi, B. (2018). Assessing the change in environmental impact categories when replacing conventional plastic with bioplastic in chosen application fields. Environmental Science, Chemical Engineering Transactions, 70, 2283-9216.
  • [32] Salgaonkar, B. B. & Bragança, J. M., (2017). Utilization of sugarcane bagasse by halogeometricum borinquense strain E3 for biosynthesis of poly (3-hydroxybutyrateco- 3-hydroxyvalerate). Bioengineering, 4(2), 50.
  • [33] Chee, J. Y., Yoga, S. S., Lau, N. S., Ling, S. C., Abed, R. M. M. & Sudesh, K. (2010). Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. Applied Microbiology and Microbial Biotechnology, 2, 1395.
  • [34] Ciesielski, S. & Mozejko, J. (2013). Saponified waste palm oil as an attractive renewable resource for mclpolyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering, 116(4), 485-492.
  • [35] Jiang, H. L., Jin, J. Z., Wu, D., Xu, D., Lin, G. F., Yu, H., Ma, D. Y. & Liang J. (2013). Celastrol exerts synergistic effects with PHA-665752 and inhibits tumor growth of c-Met-deficient hepatocellular carcinoma in vivo. Molecular Biology Reports, 40, 4203-4209.
  • [36] Bussemaker, M. J. & Zhang, D. (2013). Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial and Engineering Chemistry, 52(10), 3563- 3580.
  • [37] Cesario, M. T., Raposo, R. S., Almeida, M. C. M. D., Keulen, F. V., Ferreira, B. S. & Da Fonseca, M. M. R. (2014). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31, 104- 113.
  • [38] Pais, J., Serafim, S., Freitas, F. & Reis, M. A. M. (2016). Conversion of cheese whey into poly (3-hydroxybutyrateco- 3-hydroxyvalerate) by haloferax mediterranei. New Biotechnol, 33(1), 224- 230.
  • [39] Tokiwa, Y., Calabia, B. P., Ugwu, C.U. & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10, 3722-3742.
  • [40] Lim, J., You, M., Li, J. & Li, Z. (2017). Emerging bone tissue engineering via polyhydroxyalkanoate (PHA) based scaffolds. Materials Science and Engineering C: Materials for Biological Applications, 79, 917-929.
  • [41] Aldor, I. S. & Keasling, J. D. (2003). Process design for microbial plastic factories: Metabolic engineering of polyhydroxyalkanoates. Current Opinion in Biotechnology, 14, 475-483.
  • [42] Amara, A. A., Steinbüchel, A. & Rehm, B. H. A. (2002). In vivo evolution of the aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol, 59, 477-482.
  • [43] Weber, C. J., Haugaard, V., Festersen, R. & Bertelsen, G. (2002). Production and applications of biobased packaging materials for the food industry. Food Additives and Contaminants, 19(1), 172- 177.
  • [44] Cabedo, L., Feijoo, J. L., Villanueva, M. P. & Lagarón, J.M. (2006). Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromolecular Symposia, 233(1), 191-197.
  • [45] Kumar, Y., Shukla, P., Singh, P., Prabhakaran, P. P., & Tanwar, V. K. (2014). Bioplastics. A perfect tool for eco-friendly food packaging: A Review. Journal of Food Product Development and Packaging, 1, 1-6.

BIOPLASTICS USED IN RENEWABLE PACKAGING IN THE FOOD INDUSTRY

Year 2019, Volume: 5 Issue: 1, 7 - 16, 01.04.2019

Abstract

Food waste from different sources is an environmental burden. In food technology, plastics and polymers
are an alternative option for food packaging, food preservation and preservation, and recycling of food
waste. Today, almost all plastics are produced synthetically and have much better properties than naturally
occurring plastics. The raw materials of all modern plastics are petroleum and natural gas. Due to the nondegradable
properties of these raw materials, it is supported to reduce the cost of production in plastics
by offering an environmentalist approach option. In this review, for polymers such as polyhydroxy
alkanoates (PHA) Poly (3-hydroxybutyrate) (PHB), Polylactic acid, Polylactide aliphatic copolymer
(CPLA), Polycaprolactone (PCL), polyhydroxy-co-3-butyrate-co-3-valerate (PHBV) focuses on available
technologies for polymers. Fermentation technologies based on pure and mixed cultures are of particular
importance in the preparation of raw materials (prepared from food waste) for true bioplastic production. In
this study, alternative methods are provided for the evaluation of food wastes, their economical/technical
approaches meeting the expectations and applicability, and the reduction of waste by solving food wastes
(FW) with environmentally friendly renewable polymer packages.

References

  • [1] Awadhiya, D. & Kumar V. V. (2016). Crosslinking of agarose bioplastic using citric acid. Carbohydrate Polymers, 151, 60-67.
  • [2] Rohrbecka, M., Körstena, S., Fischera, C. B., Wehnera, S. & Kessler, B. (2013). Diamond like carbon coating of a pure bioplastic foil. Thin Solid Films, 545, 558- 563.
  • [3] Piemonte, V. (2011). Bioplastic Wastes: The best final disposition for energy saving. Journal of Polymers and the Environment, 19, 988–994.
  • [4] Tsang, Y. F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y. S., Song, H., Kim, K. H., Kwon, E. E. & Jeon, Y. J., (2019). Production of bioplastic through food waste valorization. Environment International, 127, 625-644.
  • [5] Yadav, B., Pandey, A., Kumar, L. R. & Tyagi, R. D. (2020). Bioconversion of waste (water)/residues to bioplastics-A circular bioeconomy approach. Bioresource Technology, 298, 122584.
  • [6] Kalia, V. C., Raizada, N. & Sonakya, V. (2000). Bioplastics. Journal of Scientific and Industrial Research, 59, 433-445.
  • [7] Anonymous, 2004. Environmental product declaration of Mater-Bi NF07U. Novamont, Italy. http://bio4eu.jrc. ec.europa.eu/documents/e_epd102.pdf. (Date Accessed: 12.06.2020)
  • [8] Wu, C. S. (2011). Characterization and biodegradability of polyester bioplastic based green renewable composites from agricultural residues. Polymer Degradation and Stability, 97(1), 64-71.
  • Harding, K. G., Dennis, J. S., Blottnitz, H. V. & Harrison, S. T. L., (2007). Environmental analysis of plastic production processes: Comparing petroleum-based polypropylene and polyethylene with biologically based poly- β-hydroxybutyric acid using life cycle assessment. Journal of Biotechnology, 130, 57–66.
  • [10] Gironi, F. & Piemonte, V. (2011). Bioplastics and petroleum-based plastics: Strengths and Weaknesses. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(21), 1949-1959.
  • [11] Yamada, M., Morimitsu, S., Hosono, E. & Yamada, T. (2020). Preparation of bioplastic using soy protein. International Journal of Biological Macromolecules, 149, 1077-1083.
  • [12] Accinelli, C., Sacca, M. L., Mencarelli, M. & Vicari, A. (2012). Application of bioplastic moving bed bio-film carriers for the removal of synthetic pollutants from wastewater. Bioresource Technology, 120, 180-186.
  • [13] Peelman, N., Ragaert, P., Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Impe, V. F. & Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science and Technology, 32(2), 128-141.
  • [14] Zhao, Xi., Ji, K., Kurt, K., Cornish, K. & Vodovotz, Y. (2019). Optimal mechanical properties of biodegradable natural rubber toughened PHBV bioplastics intended for food packaging applications. Food Packaging and Shelf Life, 21, 100348.
  • [15] Siracusa, V., Rocculi, P., Romani, S. & Rosa, M. D. (2008). Biodegradable polymers for food packaging: A review. Trends in Food Science and Technology, 19(12), 634-643.
  • [16] Berthet, M. A., Coussey, H. A., Chea, V., Guillard, V., Gastaldi, E. & Gontard N. (2015). Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV based composites properties. Composites Part A, Applied Science and Manufacturing, 72, 139-147.
  • [17] Takma, D. K. & Nadeem, H. Ş. (2019). Gıdalarda akıllı ambalajlama teknolojisi ve güncel uygulamalar. The Journal of food. 44(1), 131-142.
  • [18] Yu, H., Yan, C. & Yao, J. (2014). Fully biodegradable food packaging materials based on functionalized cellulose nanocrystals/poly (3-hydroxybutyrate-co- 3-hydroxyvalerate) nanocomposites. RSC Advances, 104, 59792-59802.
  • [19] Phromma, W., & Magaraphan, R. (2018). Fabrication of admicelled natural rubber by polycaprolactone for toughening poly (lactic acid). Journal of Polymers and the Environment, 26(6), 2268-2280.
  • [20] Luengo, J. M., Garcı́a, B., Sandoval, A., Naharro G. & Olivera E. R. (2003). Bioplastics from microorganisms. Current Opinion in Microbiology, 6(3), 251-260.
  • [21] Ravindran, R. & Jaiswal, A.K. (2016). Exploitation of food industry waste for high value products. Trends in Biotechnology, 34(1), 58-69.
  • [22] Pfaltzgraff, L. A., Bruyn, M., Cooper, E. C., Budarin, V. & Clark J. H. (2013). Food waste biomass: a resource for high value chemicals. Green Chemistry, 15(2), 307- 314.
  • [23] Krochta, J. M. & Mulder-Johnson, C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technology, 61
  • [24] Kaplan, D. L., Hocking, P. J. & Marchessault, R. H. (1998). Polyhydroxyalkanoates. Biopolymers from Renewable Resources, 220-248
  • [25] Martin, O. & Averous, L. (2001). Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymers, 42(14), 6209-6219.
  • [26] Yang, L. & Paulson, A. T. (2000). Effects of lipids on mechanical and moisture barrier properties of edible gellan film. Food Research International, 33(7), 571- 578.
  • [27] Barron, C., Varoquaux, P., Guilbert, S., Gontard, N. & Gouble, B. (2002). Modified atmosphere packaging of cultivated mushroom (Agaricus bisporus L.) with hydrophilic films. Journal of Food Science, 67(1), 251-255.
  • [28] Suman, S. P., Mancini, R. A, Joseph, P., Ramanathan, R., Konda, M. K. R., Dady, G. & Yin, S., (2010). Packaging specific influence of chitosan on color stability and lipid oxidation in refrigerated ground beef. Meat Science, 86(4), 994-998.
  • [29] Koller, M., Marsalek, L., Mirandade, M., Dias S. & Braunegg G. (2017). Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology, 37, 24-38.
  • [30] Serafim, L. S., Lemos, P. C., Albuquerque, M. G. E. & Reis, M. A. M. (2008). Strategies for PHA production by mixed cultures and renewable waste materials. Appl Microbiol Biotechnol, 81, 615-628.
  • [31] Koch, D. R. & Mihalyi, B. (2018). Assessing the change in environmental impact categories when replacing conventional plastic with bioplastic in chosen application fields. Environmental Science, Chemical Engineering Transactions, 70, 2283-9216.
  • [32] Salgaonkar, B. B. & Bragança, J. M., (2017). Utilization of sugarcane bagasse by halogeometricum borinquense strain E3 for biosynthesis of poly (3-hydroxybutyrateco- 3-hydroxyvalerate). Bioengineering, 4(2), 50.
  • [33] Chee, J. Y., Yoga, S. S., Lau, N. S., Ling, S. C., Abed, R. M. M. & Sudesh, K. (2010). Bacterially produced polyhydroxyalkanoate (PHA): Converting renewable resources into bioplastics. Applied Microbiology and Microbial Biotechnology, 2, 1395.
  • [34] Ciesielski, S. & Mozejko, J. (2013). Saponified waste palm oil as an attractive renewable resource for mclpolyhydroxyalkanoate synthesis. Journal of Bioscience and Bioengineering, 116(4), 485-492.
  • [35] Jiang, H. L., Jin, J. Z., Wu, D., Xu, D., Lin, G. F., Yu, H., Ma, D. Y. & Liang J. (2013). Celastrol exerts synergistic effects with PHA-665752 and inhibits tumor growth of c-Met-deficient hepatocellular carcinoma in vivo. Molecular Biology Reports, 40, 4203-4209.
  • [36] Bussemaker, M. J. & Zhang, D. (2013). Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial and Engineering Chemistry, 52(10), 3563- 3580.
  • [37] Cesario, M. T., Raposo, R. S., Almeida, M. C. M. D., Keulen, F. V., Ferreira, B. S. & Da Fonseca, M. M. R. (2014). Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnology, 31, 104- 113.
  • [38] Pais, J., Serafim, S., Freitas, F. & Reis, M. A. M. (2016). Conversion of cheese whey into poly (3-hydroxybutyrateco- 3-hydroxyvalerate) by haloferax mediterranei. New Biotechnol, 33(1), 224- 230.
  • [39] Tokiwa, Y., Calabia, B. P., Ugwu, C.U. & Aiba, S. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10, 3722-3742.
  • [40] Lim, J., You, M., Li, J. & Li, Z. (2017). Emerging bone tissue engineering via polyhydroxyalkanoate (PHA) based scaffolds. Materials Science and Engineering C: Materials for Biological Applications, 79, 917-929.
  • [41] Aldor, I. S. & Keasling, J. D. (2003). Process design for microbial plastic factories: Metabolic engineering of polyhydroxyalkanoates. Current Opinion in Biotechnology, 14, 475-483.
  • [42] Amara, A. A., Steinbüchel, A. & Rehm, B. H. A. (2002). In vivo evolution of the aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol, 59, 477-482.
  • [43] Weber, C. J., Haugaard, V., Festersen, R. & Bertelsen, G. (2002). Production and applications of biobased packaging materials for the food industry. Food Additives and Contaminants, 19(1), 172- 177.
  • [44] Cabedo, L., Feijoo, J. L., Villanueva, M. P. & Lagarón, J.M. (2006). Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromolecular Symposia, 233(1), 191-197.
  • [45] Kumar, Y., Shukla, P., Singh, P., Prabhakaran, P. P., & Tanwar, V. K. (2014). Bioplastics. A perfect tool for eco-friendly food packaging: A Review. Journal of Food Product Development and Packaging, 1, 1-6.
There are 45 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Article
Authors

Elif Ebrar Yücesoy This is me 0000-0002-8741-6054

Fatma Nur Arıcı 0000-0002-7135-4477

Cihat Demirci This is me 0000-0003-2603-6901

Gülay Baysal This is me 0000-0001-7081-1472

Publication Date April 1, 2019
Published in Issue Year 2019 Volume: 5 Issue: 1

Cite

APA Yücesoy, E. E., Arıcı, F. N., Demirci, C., Baysal, G. (2019). BIOPLASTICS USED IN RENEWABLE PACKAGING IN THE FOOD INDUSTRY. International Journal of Food Engineering Research, 5(1), 7-16.

All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png