Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 2, 1 - 8, 18.07.2024

Abstract

References

  • Bang, D. H., & Shin, W. S. (2016). Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. NeuroRehabilitation, 38(4), 343–349.
  • Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation, 137(12):e67-e492.
  • Feigin VL, Lawes CM, Bennett DA, Anderson CS. (2003). Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. The Lancet Neurology, 2(1):43-53.
  • Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5):459-80.
  • Grysiewicz RA, Thomas K, Pandey DK. (2008). Epidemiology of ischemic and hemorrhagic stroke: Incidence, prevalence, mortality, and risk factors. Neurologic Clinics, 26(4):871-95. Hidler J, Sainburg R. (2011). Role of robotics in neurorehabilitation. Top Spinal Cord Inj Rehabilitation, summer;17(1):42-49.
  • Iosa M, Morone G, Cherubini A, et al. (2016). The three laws of neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. J Med Biol Eng, 36:1-11.
  • Jayaraman, A., O’Brien, M. K., Madhavan, S., Mummidisetty, C. K., Roth, H. R., Hohl, K., . . . Rymer, W. Z. (2019). Stride management assist exoskeleton vs functional gait training in stroke. Neurology, 92(3).
  • Jerrgensen H, Nakayama H, Reith J, Raaschou H, Olsen TS. (1997). Stroke recurrence: Predictors, severity, and prognosis. The Copenhagen Stroke Study. Neurology, 48(4):891-5.
  • Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. (1999). Stroke: neurologic and functional recovery the Copenhagen stroke study. Phys Med Rehabil Clin N Am., 10:887–906.
  • Kim, M. S., Kim, S. H., Noh, S. E., Bang, H. J., & Lee, K. M. (2019). Robotic-Assisted Shoulder Rehabilitation Therapy Effectively Improved Poststroke Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 100(6), 1015–1022.
  • Kim, H., Park, G., Shin, J. H., & You, J. H. (2020). Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: a randomised controlled trial. Scientific Reports, 10(1).
  • Lee, M. J., Lee, J. H., & Lee, S. M. (2018). Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial. Technology and Health Care, 26(4), 659–666.
  • Lee, SH, Park G, Cho DY, Kim HY, Lee JY, Kim S, et al. (2020). Comparisons between endeffector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate to-severe upper limb impairment. Sci Rep, 10(1).
  • Lee, J., Chun, M. H., Seo, Y. J., Lee, A., Choi, J., & Son, C. (2022). Effects of a lower limb rehabilitation robot with various training modes in patients with stroke: A randomized controlled trial. Medicine, 101(44), e31590. Lee, J., Kim, D. Y., Lee, S. H., Kim, J. H., Kim, D. Y., Lim, K. B., & Yoo, J. (2023). End-effector lower limb robot-assisted gait training effects in subacute stroke patients: A randomized controlled pilot trial. Medicine, 102(42), e35568.
  • Liao, W. W., Wu, C. Y., Hsieh, Y. W., Lin, K. C., & Chang, W. Y. (2011). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clinical Rehabilitation, 26(2), 111–120.
  • Masiero S, Carraro E, Ferraro C, Gallina P, Rossi A, Rosati G. (2009). Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J. Rehabil. Med. 41(12), 981–985.
  • Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, et al. (2014). The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices, 11:187–98.
  • Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. (1994). Recovery of upper extremity function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil., 75:394–8.
  • Rosati G, Gallina P, Masiero S. (2007). Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 560–569.
  • Takahashi, K., Domen, K., Sakamoto, T., Toshima, M., Otaka, Y., Seto, M., . . . Hachisuka, K. (2016). Efficacy of Upper Extremity Robotic Therapy in Subacute Poststroke Hemiplegia. Stroke, 47(5), 1385–1388.
  • Takebayashi, T., Takahashi, K., Okita, Y., Kubo, H., Hachisuka, K., & Domen, K. (2022). Impact of the robotic-assistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: sub-analysis of a randomized clinical trial. Journal of NeuroEngineering and Rehabilitation, 19(1).
  • Tang, C., Zhou, T., Zhang, Y., Yuan, R., Zhao, X., Yin, R.,. . . Wang, H. (2023). Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG. European Journal of Medical Research, 28(1).
  • Timmermans AA, Seelen AMH, Willmann RD, Kingma H. (2009). Technologyassisted training of arm – hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. Neuroeng. Rehabil. 6, 1.
  • Vanoglio, F., Bernocchi, P., Mulè, C., Garofali, F., Mora, C., Taveggia, G., . . . Luisa, A. (2016). Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clinical Rehabilitation, 31(3), 351–360.
  • Yoo, H. J., Bae, C. R., Jeong, H., Ko, M. H., Kang, Y. K., & Pyun, S. B. (2023). Clinical efficacy of overground powered exoskeleton for gait training in patients with subacute stroke: A randomized controlled pilot trial. Medicine, 102(4), e32761.
  • Zhang, H., Li, X., Gong, Y., Wu, J., Chen, J., Chen, W., . . . Shen, C. (2023). Three-Dimensional Gait Analysis and sEMG Measures for Robotic-Assisted Gait Training in Subacute Stroke: A Randomized Controlled Trial. BioMed Research International, 2023, 1–12.

Robotic Rehabilitation in Stroke

Year 2024, Volume: 10 Issue: 2, 1 - 8, 18.07.2024

Abstract

Stroke is the most common neurological disease worldwide. Motor impairments after a stroke are often persistent and lead to disability. Engaging in intense, task-specific, and repetitive activities early in the rehabilitation process plays a crucial role in increasing the functional recovery of patients. Robotic rehabilitation, as a neurorehabilitation approach, enables the implementation of repetitive and high-intensity training programs, addressing the need for motor learning after a stroke. When applied in conjunction with conventional approaches, it reduces the labor-intensive components of the physiotherapist's work, contributing to a decrease in workload and allowing physiotherapists to engage in more functional activities. Additionally, it is an efficient method for objectively assessing the patient's functional status. Reviewing the literature reveals that rehabilitation programs supported by robotic devices are more effective in both upper and lower extremity recovery compared to the application of conventional methods alone. In the process of regaining lost motor function after a stroke, robotic rehabilitation has become an effective and alternative method, contributing to the physiotherapists' more efficient work and ensuring a highly repetitive and intense exercise program for patients.

References

  • Bang, D. H., & Shin, W. S. (2016). Effects of robot-assisted gait training on spatiotemporal gait parameters and balance in patients with chronic stroke: A randomized controlled pilot trial. NeuroRehabilitation, 38(4), 343–349.
  • Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. (2018). Heart disease and stroke statistics—2018 update: a report from the American Heart Association. Circulation, 137(12):e67-e492.
  • Feigin VL, Lawes CM, Bennett DA, Anderson CS. (2003). Stroke epidemiology: A review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. The Lancet Neurology, 2(1):43-53.
  • Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, et al. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5):459-80.
  • Grysiewicz RA, Thomas K, Pandey DK. (2008). Epidemiology of ischemic and hemorrhagic stroke: Incidence, prevalence, mortality, and risk factors. Neurologic Clinics, 26(4):871-95. Hidler J, Sainburg R. (2011). Role of robotics in neurorehabilitation. Top Spinal Cord Inj Rehabilitation, summer;17(1):42-49.
  • Iosa M, Morone G, Cherubini A, et al. (2016). The three laws of neurorobotics: a review on what neurorehabilitation robots should do for patients and clinicians. J Med Biol Eng, 36:1-11.
  • Jayaraman, A., O’Brien, M. K., Madhavan, S., Mummidisetty, C. K., Roth, H. R., Hohl, K., . . . Rymer, W. Z. (2019). Stride management assist exoskeleton vs functional gait training in stroke. Neurology, 92(3).
  • Jerrgensen H, Nakayama H, Reith J, Raaschou H, Olsen TS. (1997). Stroke recurrence: Predictors, severity, and prognosis. The Copenhagen Stroke Study. Neurology, 48(4):891-5.
  • Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. (1999). Stroke: neurologic and functional recovery the Copenhagen stroke study. Phys Med Rehabil Clin N Am., 10:887–906.
  • Kim, M. S., Kim, S. H., Noh, S. E., Bang, H. J., & Lee, K. M. (2019). Robotic-Assisted Shoulder Rehabilitation Therapy Effectively Improved Poststroke Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation, 100(6), 1015–1022.
  • Kim, H., Park, G., Shin, J. H., & You, J. H. (2020). Neuroplastic effects of end-effector robotic gait training for hemiparetic stroke: a randomised controlled trial. Scientific Reports, 10(1).
  • Lee, M. J., Lee, J. H., & Lee, S. M. (2018). Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial. Technology and Health Care, 26(4), 659–666.
  • Lee, SH, Park G, Cho DY, Kim HY, Lee JY, Kim S, et al. (2020). Comparisons between endeffector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate to-severe upper limb impairment. Sci Rep, 10(1).
  • Lee, J., Chun, M. H., Seo, Y. J., Lee, A., Choi, J., & Son, C. (2022). Effects of a lower limb rehabilitation robot with various training modes in patients with stroke: A randomized controlled trial. Medicine, 101(44), e31590. Lee, J., Kim, D. Y., Lee, S. H., Kim, J. H., Kim, D. Y., Lim, K. B., & Yoo, J. (2023). End-effector lower limb robot-assisted gait training effects in subacute stroke patients: A randomized controlled pilot trial. Medicine, 102(42), e35568.
  • Liao, W. W., Wu, C. Y., Hsieh, Y. W., Lin, K. C., & Chang, W. Y. (2011). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. Clinical Rehabilitation, 26(2), 111–120.
  • Masiero S, Carraro E, Ferraro C, Gallina P, Rossi A, Rosati G. (2009). Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy. J. Rehabil. Med. 41(12), 981–985.
  • Masiero S, Poli P, Rosati G, Zanotto D, Iosa M, Paolucci S, et al. (2014). The value of robotic systems in stroke rehabilitation. Expert Rev Med Devices, 11:187–98.
  • Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. (1994). Recovery of upper extremity function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil., 75:394–8.
  • Rosati G, Gallina P, Masiero S. (2007). Design, implementation and clinical tests of a wire-based robot for neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 560–569.
  • Takahashi, K., Domen, K., Sakamoto, T., Toshima, M., Otaka, Y., Seto, M., . . . Hachisuka, K. (2016). Efficacy of Upper Extremity Robotic Therapy in Subacute Poststroke Hemiplegia. Stroke, 47(5), 1385–1388.
  • Takebayashi, T., Takahashi, K., Okita, Y., Kubo, H., Hachisuka, K., & Domen, K. (2022). Impact of the robotic-assistance level on upper extremity function in stroke patients receiving adjunct robotic rehabilitation: sub-analysis of a randomized clinical trial. Journal of NeuroEngineering and Rehabilitation, 19(1).
  • Tang, C., Zhou, T., Zhang, Y., Yuan, R., Zhao, X., Yin, R.,. . . Wang, H. (2023). Bilateral upper limb robot-assisted rehabilitation improves upper limb motor function in stroke patients: a study based on quantitative EEG. European Journal of Medical Research, 28(1).
  • Timmermans AA, Seelen AMH, Willmann RD, Kingma H. (2009). Technologyassisted training of arm – hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. Neuroeng. Rehabil. 6, 1.
  • Vanoglio, F., Bernocchi, P., Mulè, C., Garofali, F., Mora, C., Taveggia, G., . . . Luisa, A. (2016). Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clinical Rehabilitation, 31(3), 351–360.
  • Yoo, H. J., Bae, C. R., Jeong, H., Ko, M. H., Kang, Y. K., & Pyun, S. B. (2023). Clinical efficacy of overground powered exoskeleton for gait training in patients with subacute stroke: A randomized controlled pilot trial. Medicine, 102(4), e32761.
  • Zhang, H., Li, X., Gong, Y., Wu, J., Chen, J., Chen, W., . . . Shen, C. (2023). Three-Dimensional Gait Analysis and sEMG Measures for Robotic-Assisted Gait Training in Subacute Stroke: A Randomized Controlled Trial. BioMed Research International, 2023, 1–12.
There are 26 citations in total.

Details

Primary Language English
Subjects Physiotherapy
Journal Section Research Article
Authors

Gizem Erdoğan

Publication Date July 18, 2024
Submission Date January 24, 2024
Acceptance Date January 28, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Erdoğan, G. (2024). Robotic Rehabilitation in Stroke. Sanitas Magisterium, 10(2), 1-8.
AMA Erdoğan G. Robotic Rehabilitation in Stroke. Sanitas magisterium. July 2024;10(2):1-8.
Chicago Erdoğan, Gizem. “Robotic Rehabilitation in Stroke”. Sanitas Magisterium 10, no. 2 (July 2024): 1-8.
EndNote Erdoğan G (July 1, 2024) Robotic Rehabilitation in Stroke. Sanitas Magisterium 10 2 1–8.
IEEE G. Erdoğan, “Robotic Rehabilitation in Stroke”, Sanitas magisterium, vol. 10, no. 2, pp. 1–8, 2024.
ISNAD Erdoğan, Gizem. “Robotic Rehabilitation in Stroke”. Sanitas Magisterium 10/2 (July 2024), 1-8.
JAMA Erdoğan G. Robotic Rehabilitation in Stroke. Sanitas magisterium. 2024;10:1–8.
MLA Erdoğan, Gizem. “Robotic Rehabilitation in Stroke”. Sanitas Magisterium, vol. 10, no. 2, 2024, pp. 1-8.
Vancouver Erdoğan G. Robotic Rehabilitation in Stroke. Sanitas magisterium. 2024;10(2):1-8.

https://dergipark.org.tr/tr/download/journal-file/2143321433