Translation
BibTex RIS Cite

Transavrasya Dillerinin Tarımsal Yayılma Nirengi Desteklemesi

Year 2022, Volume: 8 Issue: 17, 268 - 304, 30.04.2022

Abstract

Transavrasya Dillerinin konuşurlarının köken ve ilk yayılma alanları –bunlar Japon, Kore, Tunguz, Moğol ve Türk- Avrasya halk tarihinin en çok tartışılan sorunları arasındadır 1-3. Tarıma dayalı genleşmeler ve nüfusun hareketliliği ile dilbilimsel dağılış arasındaki ilişki bu tartışılan sorunun anahtarıdır4-5. Bu sorun, genetik bilimi, arkeoloji ve dil bilimin ortak bir bakış açısıyla tarafımızca irdelendi. Transeurasian tarım doğasının ve temel söz varlığının ayrıntılı olarak kapsadığı bu disiplinlerin geniş içerikli veri kümelerini rapor ettik; Kuzeydoğu Asya’nın 255 Neolitik-Bronz öncesi merkezlerinin arkeolojik veritabanı; ve Kore’nin ilk genomlarının koleksiyonu, Ryukyu adalarının ve Japon çiftçilerin en eski tahılı, Doğu Asya’nın önceden yayımlanmış genomlarının tamamlayıcısını bulmak. Pastoralist hipotezlerin 6-8 geleneksel zorluğu, Transavrasya dillerinin ortak atalarının ve en eski dağılışlarının, eski Neolitik dönemden itibaren Kuzeydoğu Asya’dan karşıya hareket eden ilk çiftçinin geriye doğru izini sürebilmektir, fakat Bronz öncesinden itibaren bu geniş yaygın kültürel ilişki ortak mirasçılarca gizlenmiştir. Üç fahri disiplin hızlı ve önemli ölçüde gelişim göstermekle birlikte, disiplinlerin birleştirilen bu kanıtları ilk yayılmanın Transeurasiankonuşurlarının tarım işleri olduğunu bize gösteriyor.

References

  • 1. Starostin, S., Dybo, A. & Mudrak, O. Etymological Dictionary of the Altaic LanguagesVol. I– III (Brill, 2003).
  • 2. Blažek, V. Altaic Languages. History of Research, Survey, Classification and a Sketch ofComparative Grammar (Masaryk Univ. Press, 2019).
  • 3. Robbeets, M. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. &Savelyev, A.) 772–783 (Oxford Univ. Press, 2020).
  • 4. Mallory, J., Dybo, A. & Balanovsky, O. The impact of genetics research on archaeology andlinguistics in Eurasia. Russ. J. Genet. 55, 1472–1487 (2019).
  • 5. Bellwood, P. & Renfrew, C. (eds) Examining the Farming/Language Dispersal Hypothesis(McDonald Institute for Archaeological Research, 2002).
  • 6. Menges, K. Dravidian and Altaic. Anthropos 72, 129–179 (1977).
  • 7. Miller, R. A. Archaeological light on Japanese linguistic origins. Asian Pac. Quart. Soc.Cult. Affairs 22, 1–26 (1990).
  • 8. Dybo, A. Language and archeology: some methodological problems. 1. Indo-Europeanand Altaic landscapes. J. Language Relationship 9, 69–92 (2013).
  • 9. Haak, W. et al. Massive migration from the steppe was a source for Indo-Europeanlanguages in Europe. Nature 522, 207–211 (2015).
  • 10. Allentoft, M. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172(2015).
  • 11. Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppeexpansions into Asia. Science 360, eaar7711 (2018).
  • 12. Ning, C. et al. Ancient genomes from northern China suggest links between subsistencechanges and human migration. Nat. Commun. 11, 2700 (2020).
  • 13. Wang, C. C. et al. Genomic insights into the formation of human populations in East Asia.Nature 591, 413–419 (2021).
  • 14. Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture innorthern and southern China. Science 369, 282–288 (2020).
  • 15. Francis-Ratte, A. & Unger, J. M. in The Oxford Guide to the Transeurasian Languages(edsRobbeets, M. & Savelyev, A.) 705–714 (Oxford Univ. Press, 2020).
  • 16. Anderson, G. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. &Savelyev, A.) 715–725 (Oxford Univ. Press, 2020).
  • 17. Vajda, E. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. &Savelyev, A.) 726–734 (Oxford Univ. Press, 2020).
  • 18. Robbeets, M. Is Japanese related to Korean, Tungusic, Mongolic and Turkic? (Harrassowitz,2005).
  • 19. Robbeets, M. Diachrony of Verb Morphology: Japanese and the Transeurasian languages(Vol. 291 in Trends in Linguistics. Studies and Monographs) (Mouton de Gruyter, 2015).
  • 20. Heggarty, P. & Beresford-Jones, D. in Encyclopedia of Global Archaeology (ed. Smith, C.)1–9 (Springer, 2014).
  • 21. Bellwood, P. First Farmers: The Origins of Agricultural Societies (Blackwell, 2005).
  • 22. Starostin, S. in Past Human Migrations in East Asia: Matching Archaeology, Linguistics andGenetics (eds Sanchez-Mazas, A. et al.) 254–262 (Routledge, 2008).
  • 23. Ramstedt, G. J. A Comparison of the Altaic Languages with Japanese. Trans. Asiatic Soc.Japan Second Ser. 7, 41–54 (1924).
  • 24. Kæmpfer, E. De Beschryving van Japan, benevens eene Beschryving van het KoningrykSiam (Balthasar Lakeman, 1729).
  • 25. Crawford, G. W. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape,P.V. & Olsen, J.W.) 421–435 (Springer, 2018).
  • 26. Stevens, C. & Fuller, D. The spread of agriculture in eastern Asia: archaeological bases forhypothetical farmer/language dispersals. Lang. Dyn. Chang. 7, 152–186 (2017).
  • 27. Leipe, C. et al. Discontinuous spread of millet agriculture in eastern Asia and prehistoricpopulation dynamics. Sci. Adv. 5, eaax6225 (2019).
  • 28. Stevens, C. et al. A model for the domestication of Panicum miliaceum (common, prosoor broomcorn millet) in China. Veget. Hist. Archaeobot. 30, 21–33 (2021).
  • 29. Shelach-Lavi, G. et al. Sedentism and plant cultivation in northeast China emerged duringaffluent conditions. PLoS ONE 14, e0218751 (2019).
  • 30. Lee, G. A. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape, P. &Olsen, J.) 451–481 (Springer, 2017).
  • 31. Li, T. et al. Millet agriculture dispersed from Northeast China to the Russian Far East:integrating archaeology, genetics and linguistics. Archaeol. Res. Asia 22, 100177(2020).
  • 32. Nelson, S. M. et al. Tracing population movements in ancient East Asia through thelinguistics and archaeology of textile production. Evol. Hum. Sci. 2, e5 (2020).
  • 33. Hudson, M. J. Ruins of Identity: Ethnogenesis in the Japanese Islands (Univ. Hawai‘i Press,1999).
  • 34. Qin, L. & Fuller D. Q. in Prehistoric Maritime Cultures and Seafaring (eds Wu, C. & Rolett,B.) 159–191 (Springer, 2019).
  • 35. Hosner, D. et al. Spatiotemporal distribution patterns of archaeological sites in Chinaduring the Neolithic and Bronze Age: an overview. Holocene 26, 1576–1593 (2016).
  • 36. Hudson, M. J. & Robbeets, M. Archaeolinguistic evidence for the farming/languagedispersal of Koreanic. Evol. Hum. Sci. 2, e52 (2020).
  • 37. Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell183, 890–904 (2020).
  • 38. Savelyev, A. & Jeong, C. Early nomads of the Eastern Steppe and their tentativeconnections in the West. Evol. Human Sci. 2, e20 (2020).
  • 39. Janhunen, J. in The Mongolic languages (ed. Janhunen, J.) 1–29 (Routledge, 2003).
  • 40. Hudson, M. J. in New Perspectives in Southeast Asian and Pacific Prehistory (eds Piper, P.,H. Matsumura, H. & Bulbeck, D.) 189–199 (ANU Press, 2017).
  • 41. Sagart, L. et al. Dated language phylogenies shed light on the ancestry of Sino-Tibetan.Proc. Natl Acad. Sci. USA 116, 10317–10322 (2019).
  • 42. Zhang, H. et al. Dated phylogeny suggests early Neolithic origin of SinoTibetanlanguages. Sci. Rep. 10, 20792 (2020).
  • 43. Haspelmath, M. & Tadmor, U. Loanwords in the World’s Languages: a Comparative Handbook (Mouton de Gruyter, 2009).
  • 44. Heggarty, P. & Anderson, C. Cognacy in Basic Lexicon (CoBL), https://www.shh.mpg.de/ dlce-research-projects/ie-cor-database (Max Planck Institute for the Science of Human History, 2015).
  • 45. Savelyev, A. & Robbeets, M. Bayesian phylolinguistics infers the internal structure and the time-depth of the Turkic language family. J. Lang. Evol. 39–53 (2019).
  • 46. Oskolskaya, S., Koile, E. & Robbeets, M. A Bayesian approach to the classification of Tungusic languages. Diachronica https://doi.org/10.1075/dia.20010.osk (2021).
  • 47. Bouckaert, R., Bowern, C. & Atkinson, Q. D. The origin and expansion of Pama–Nyungan languages across Australia. Nat. Ecol. Evol. 2, 741–749 (2018).
  • 48. Bouckaert, R. & Robbeets, M. Pseudo Dollo models for the evolution of binary characters along a tree. Preprint at https://doi.org/10.1101/207571 (2018).
  • 49. Drummond, A. J. et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
  • 50. Gavryushkina, A. et al. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).
  • 51. Maturana, P. M. et al. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68, 219–233 (2019).
  • 52. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol., 15, e1006650 (2019).
  • 53. Mueller, N. F. & Bouckaert, R. Adaptive parallel tempering for BEAST 2. Preprint at https://doi.org/10.1101/603514 (2020). 54. Bouckaert, R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ, 4, e2406 (2016).
  • 55. Wichmann, S. & Rama, T. Testing methods of linguistic homeland detection using synthetic data. Preprint at https://doi.org/10.1101/2020.09.03.280826 (2020).
  • 56. Neureiter, N., Ranacher, P., van Gijn, R., Bickel, B. & Weibel, R. 2021 Can Bayesian phylogeography reconstruct migrations and expansions in linguistic evolution? R. Soc. Open Sci. 8, 201079 (2021).
  • 57. Mace, R., Holden, C. & Shennan, S. The Evolution of Cultural Diversity—a Phylogenetic Approach (UCL Press, 2005).
  • 58. O’Brien, M. J. & Lyman, R. L. Evolutionary archeology: current status and future prospects. Evol. Anthropol. 11, 26–36 (2002).
  • 59. Allaby, R. G., Fuller, D. Q. & Brown, T. A. The genetic expectations of a protracted model for the origins of domesticated crops. Proc. Natl Acad. Sci. USA 105, 13982–13986 (2008).
  • 60. Drummond, A. J. et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
  • 61. Shelach, G. & Teng, M. in A Companion to Chinese Archaeology (ed. Underhill, A.) 37–54 (Wiley–Blackwell, 2013).
  • 62. Miyamoto, K. The initial spread of early agriculture into Northeast Asia. Asian Archaeol. 3, 11–26 (2014).
  • 63. Li, T., Ning, C., Zhushchikhovskaya, I. S., Hudson, M. J. & Robbeets, M. Millet agriculture dispersed from Northeast China to the Russian Far East: integrating archaeology, genetics and linguistics. Archaeol. Res. Asia 22, e100177 (2020).
  • 64. Kōmoto, M. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 8–34 (Kumamoto Univ., 2007).
  • 65. An, S. (ed.) Nongŏbŭi kogohak (Sahoep'yŏngnon, 2013).
  • 66. Nishitani, T. (ed.) Higashi Ajia ni okeru shisekibo no sōgōteki kenkyū (Kyushu Univ., 1997).
  • 67. Furusawa, Y. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 86–109 (Kumamoto Univ., 2007).
  • 68. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
  • 69. Peltzer, A., Herbig, A. & Krause, J. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
  • 70. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
  • 71. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
  • 72. Jun, G. et al. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).
  • 73. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
  • 74. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
  • 75. Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019).
  • 76. Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248–E11255 (2018).
  • 77. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
  • 78. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
  • 79. Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
  • 80. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
  • 81. Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).
  • 82. Patterson, N., Price, A. L. & Reich, D. Population structure and eigen analysis. PLoS Genet. 2, e190 (2006).
  • 83. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).
  • 84. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
  • 85. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
  • 86. Kirch, P. V. & Green, R. Hawaiki, Ancestral Polynesia: An Essay in Historical Anthropology (Cambridge Univ. Press, 2001).
  • 87. Oh, Y., Conte, M., Kang, S., Kim, J. & Hwang, J. Population fluctuation and the adoption of food production in prehistoric Korea: using radiocarbon dates as a proxy for population change. Radiocarbon 59, 1761–1770 (2017).
  • 88. Hosner. D., Wagner, M., Tarasov, P. E., Chen, X. & Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: an overview. Holocene 26, 1576–1593 (2016)
  • 89. Koyama, S. Jomon subsistence and population. SENRI Ethnol. Stud. 2, 1–65 (1978).

Triangulation Supports Agricultural Spread Of The Transeurasian Languages

Year 2022, Volume: 8 Issue: 17, 268 - 304, 30.04.2022

Abstract

The origin and early dispersal of speakers of Transeurasian languages—that is,
Japanese, Korean, Tungusic, Mongolic and Turkic—is among the most disputed issues
of Eurasian population history1–3. A key problem is the relationship between linguistic
dispersals, agricultural expansions and population movements4,5. Here we address
this question by ‘triangulating’ genetics, archaeology and linguistics in a unified
perspective. We report wide-ranging datasets from these disciplines, including a
comprehensive Transeurasian agropastoral and basic vocabulary; an archaeological
database of 255 Neolithic–Bronze Age sites from Northeast Asia; and a collection of
ancient genomes from Korea, the Ryukyu islands and early cereal farmers in Japan,
complementing previously published genomes from East Asia. Challenging the
traditional ‘pastoralist hypothesis’6–8, we show that the common ancestry and primary
dispersals of Transeurasian languages can be traced back to the first farmers moving
across Northeast Asia from the Early Neolithic onwards, but that this shared heritage
has been masked by extensive cultural interaction since the Bronze Age. As well as
marking considerable progress in the three individual disciplines, by combining their
converging evidence we show that the early spread of Transeurasian speakers was
driven by agriculture.

References

  • 1. Starostin, S., Dybo, A. & Mudrak, O. Etymological Dictionary of the Altaic LanguagesVol. I– III (Brill, 2003).
  • 2. Blažek, V. Altaic Languages. History of Research, Survey, Classification and a Sketch ofComparative Grammar (Masaryk Univ. Press, 2019).
  • 3. Robbeets, M. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. &Savelyev, A.) 772–783 (Oxford Univ. Press, 2020).
  • 4. Mallory, J., Dybo, A. & Balanovsky, O. The impact of genetics research on archaeology andlinguistics in Eurasia. Russ. J. Genet. 55, 1472–1487 (2019).
  • 5. Bellwood, P. & Renfrew, C. (eds) Examining the Farming/Language Dispersal Hypothesis(McDonald Institute for Archaeological Research, 2002).
  • 6. Menges, K. Dravidian and Altaic. Anthropos 72, 129–179 (1977).
  • 7. Miller, R. A. Archaeological light on Japanese linguistic origins. Asian Pac. Quart. Soc.Cult. Affairs 22, 1–26 (1990).
  • 8. Dybo, A. Language and archeology: some methodological problems. 1. Indo-Europeanand Altaic landscapes. J. Language Relationship 9, 69–92 (2013).
  • 9. Haak, W. et al. Massive migration from the steppe was a source for Indo-Europeanlanguages in Europe. Nature 522, 207–211 (2015).
  • 10. Allentoft, M. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172(2015).
  • 11. Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppeexpansions into Asia. Science 360, eaar7711 (2018).
  • 12. Ning, C. et al. Ancient genomes from northern China suggest links between subsistencechanges and human migration. Nat. Commun. 11, 2700 (2020).
  • 13. Wang, C. C. et al. Genomic insights into the formation of human populations in East Asia.Nature 591, 413–419 (2021).
  • 14. Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture innorthern and southern China. Science 369, 282–288 (2020).
  • 15. Francis-Ratte, A. & Unger, J. M. in The Oxford Guide to the Transeurasian Languages(edsRobbeets, M. & Savelyev, A.) 705–714 (Oxford Univ. Press, 2020).
  • 16. Anderson, G. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. &Savelyev, A.) 715–725 (Oxford Univ. Press, 2020).
  • 17. Vajda, E. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. &Savelyev, A.) 726–734 (Oxford Univ. Press, 2020).
  • 18. Robbeets, M. Is Japanese related to Korean, Tungusic, Mongolic and Turkic? (Harrassowitz,2005).
  • 19. Robbeets, M. Diachrony of Verb Morphology: Japanese and the Transeurasian languages(Vol. 291 in Trends in Linguistics. Studies and Monographs) (Mouton de Gruyter, 2015).
  • 20. Heggarty, P. & Beresford-Jones, D. in Encyclopedia of Global Archaeology (ed. Smith, C.)1–9 (Springer, 2014).
  • 21. Bellwood, P. First Farmers: The Origins of Agricultural Societies (Blackwell, 2005).
  • 22. Starostin, S. in Past Human Migrations in East Asia: Matching Archaeology, Linguistics andGenetics (eds Sanchez-Mazas, A. et al.) 254–262 (Routledge, 2008).
  • 23. Ramstedt, G. J. A Comparison of the Altaic Languages with Japanese. Trans. Asiatic Soc.Japan Second Ser. 7, 41–54 (1924).
  • 24. Kæmpfer, E. De Beschryving van Japan, benevens eene Beschryving van het KoningrykSiam (Balthasar Lakeman, 1729).
  • 25. Crawford, G. W. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape,P.V. & Olsen, J.W.) 421–435 (Springer, 2018).
  • 26. Stevens, C. & Fuller, D. The spread of agriculture in eastern Asia: archaeological bases forhypothetical farmer/language dispersals. Lang. Dyn. Chang. 7, 152–186 (2017).
  • 27. Leipe, C. et al. Discontinuous spread of millet agriculture in eastern Asia and prehistoricpopulation dynamics. Sci. Adv. 5, eaax6225 (2019).
  • 28. Stevens, C. et al. A model for the domestication of Panicum miliaceum (common, prosoor broomcorn millet) in China. Veget. Hist. Archaeobot. 30, 21–33 (2021).
  • 29. Shelach-Lavi, G. et al. Sedentism and plant cultivation in northeast China emerged duringaffluent conditions. PLoS ONE 14, e0218751 (2019).
  • 30. Lee, G. A. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape, P. &Olsen, J.) 451–481 (Springer, 2017).
  • 31. Li, T. et al. Millet agriculture dispersed from Northeast China to the Russian Far East:integrating archaeology, genetics and linguistics. Archaeol. Res. Asia 22, 100177(2020).
  • 32. Nelson, S. M. et al. Tracing population movements in ancient East Asia through thelinguistics and archaeology of textile production. Evol. Hum. Sci. 2, e5 (2020).
  • 33. Hudson, M. J. Ruins of Identity: Ethnogenesis in the Japanese Islands (Univ. Hawai‘i Press,1999).
  • 34. Qin, L. & Fuller D. Q. in Prehistoric Maritime Cultures and Seafaring (eds Wu, C. & Rolett,B.) 159–191 (Springer, 2019).
  • 35. Hosner, D. et al. Spatiotemporal distribution patterns of archaeological sites in Chinaduring the Neolithic and Bronze Age: an overview. Holocene 26, 1576–1593 (2016).
  • 36. Hudson, M. J. & Robbeets, M. Archaeolinguistic evidence for the farming/languagedispersal of Koreanic. Evol. Hum. Sci. 2, e52 (2020).
  • 37. Jeong, C. et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell183, 890–904 (2020).
  • 38. Savelyev, A. & Jeong, C. Early nomads of the Eastern Steppe and their tentativeconnections in the West. Evol. Human Sci. 2, e20 (2020).
  • 39. Janhunen, J. in The Mongolic languages (ed. Janhunen, J.) 1–29 (Routledge, 2003).
  • 40. Hudson, M. J. in New Perspectives in Southeast Asian and Pacific Prehistory (eds Piper, P.,H. Matsumura, H. & Bulbeck, D.) 189–199 (ANU Press, 2017).
  • 41. Sagart, L. et al. Dated language phylogenies shed light on the ancestry of Sino-Tibetan.Proc. Natl Acad. Sci. USA 116, 10317–10322 (2019).
  • 42. Zhang, H. et al. Dated phylogeny suggests early Neolithic origin of SinoTibetanlanguages. Sci. Rep. 10, 20792 (2020).
  • 43. Haspelmath, M. & Tadmor, U. Loanwords in the World’s Languages: a Comparative Handbook (Mouton de Gruyter, 2009).
  • 44. Heggarty, P. & Anderson, C. Cognacy in Basic Lexicon (CoBL), https://www.shh.mpg.de/ dlce-research-projects/ie-cor-database (Max Planck Institute for the Science of Human History, 2015).
  • 45. Savelyev, A. & Robbeets, M. Bayesian phylolinguistics infers the internal structure and the time-depth of the Turkic language family. J. Lang. Evol. 39–53 (2019).
  • 46. Oskolskaya, S., Koile, E. & Robbeets, M. A Bayesian approach to the classification of Tungusic languages. Diachronica https://doi.org/10.1075/dia.20010.osk (2021).
  • 47. Bouckaert, R., Bowern, C. & Atkinson, Q. D. The origin and expansion of Pama–Nyungan languages across Australia. Nat. Ecol. Evol. 2, 741–749 (2018).
  • 48. Bouckaert, R. & Robbeets, M. Pseudo Dollo models for the evolution of binary characters along a tree. Preprint at https://doi.org/10.1101/207571 (2018).
  • 49. Drummond, A. J. et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).
  • 50. Gavryushkina, A. et al. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).
  • 51. Maturana, P. M. et al. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 68, 219–233 (2019).
  • 52. Bouckaert, R. et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol., 15, e1006650 (2019).
  • 53. Mueller, N. F. & Bouckaert, R. Adaptive parallel tempering for BEAST 2. Preprint at https://doi.org/10.1101/603514 (2020). 54. Bouckaert, R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ, 4, e2406 (2016).
  • 55. Wichmann, S. & Rama, T. Testing methods of linguistic homeland detection using synthetic data. Preprint at https://doi.org/10.1101/2020.09.03.280826 (2020).
  • 56. Neureiter, N., Ranacher, P., van Gijn, R., Bickel, B. & Weibel, R. 2021 Can Bayesian phylogeography reconstruct migrations and expansions in linguistic evolution? R. Soc. Open Sci. 8, 201079 (2021).
  • 57. Mace, R., Holden, C. & Shennan, S. The Evolution of Cultural Diversity—a Phylogenetic Approach (UCL Press, 2005).
  • 58. O’Brien, M. J. & Lyman, R. L. Evolutionary archeology: current status and future prospects. Evol. Anthropol. 11, 26–36 (2002).
  • 59. Allaby, R. G., Fuller, D. Q. & Brown, T. A. The genetic expectations of a protracted model for the origins of domesticated crops. Proc. Natl Acad. Sci. USA 105, 13982–13986 (2008).
  • 60. Drummond, A. J. et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).
  • 61. Shelach, G. & Teng, M. in A Companion to Chinese Archaeology (ed. Underhill, A.) 37–54 (Wiley–Blackwell, 2013).
  • 62. Miyamoto, K. The initial spread of early agriculture into Northeast Asia. Asian Archaeol. 3, 11–26 (2014).
  • 63. Li, T., Ning, C., Zhushchikhovskaya, I. S., Hudson, M. J. & Robbeets, M. Millet agriculture dispersed from Northeast China to the Russian Far East: integrating archaeology, genetics and linguistics. Archaeol. Res. Asia 22, e100177 (2020).
  • 64. Kōmoto, M. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 8–34 (Kumamoto Univ., 2007).
  • 65. An, S. (ed.) Nongŏbŭi kogohak (Sahoep'yŏngnon, 2013).
  • 66. Nishitani, T. (ed.) Higashi Ajia ni okeru shisekibo no sōgōteki kenkyū (Kyushu Univ., 1997).
  • 67. Furusawa, Y. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 86–109 (Kumamoto Univ., 2007).
  • 68. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
  • 69. Peltzer, A., Herbig, A. & Krause, J. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
  • 70. Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
  • 71. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
  • 72. Jun, G. et al. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).
  • 73. Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
  • 74. Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).
  • 75. Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019).
  • 76. Jeong, C. et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA 115, E11248–E11255 (2018).
  • 77. Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
  • 78. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
  • 79. Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
  • 80. Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).
  • 81. Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).
  • 82. Patterson, N., Price, A. L. & Reich, D. Population structure and eigen analysis. PLoS Genet. 2, e190 (2006).
  • 83. Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014).
  • 84. Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
  • 85. Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
  • 86. Kirch, P. V. & Green, R. Hawaiki, Ancestral Polynesia: An Essay in Historical Anthropology (Cambridge Univ. Press, 2001).
  • 87. Oh, Y., Conte, M., Kang, S., Kim, J. & Hwang, J. Population fluctuation and the adoption of food production in prehistoric Korea: using radiocarbon dates as a proxy for population change. Radiocarbon 59, 1761–1770 (2017).
  • 88. Hosner. D., Wagner, M., Tarasov, P. E., Chen, X. & Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: an overview. Holocene 26, 1576–1593 (2016)
  • 89. Koyama, S. Jomon subsistence and population. SENRI Ethnol. Stud. 2, 1–65 (1978).
There are 88 citations in total.

Details

Primary Language English
Journal Section Translation
Translators

Muhammed Göktürk Korkmaz

Fatma Dağ

Publication Date April 30, 2022
Submission Date March 1, 2022
Published in Issue Year 2022 Volume: 8 Issue: 17

Cite

APA Triangulation Supports Agricultural Spread Of The Transeurasian Languages (M. G. Korkmaz & F. Dağ, Trans.). (2022). Uluslararası Beşeri Bilimler Ve Eğitim Dergisi, 8(17), 268-304.

International Journal of Humanities and Education (IJHE) 

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivatives 4.0 (CC BY-NC-ND 4.0) International License.