Review Article
BibTex RIS Cite

A Road-map for Mining Business Process Models via Artificial Intelligence Techniques

Year 2022, Volume: 5 Issue: 1, 27 - 51, 28.06.2022
https://doi.org/10.53508/ijiam.1036234

Abstract

Nowadays, the size of data recorded and stored in enterprises information systems (IS) is increasing every second. To face to this phenomenon, contemporary technologies play a major role for gathering, analyzing, storing, and distributing data that enables organizations to make smart decisions and to take full control of their activities.
The traditional Business Process (BP) mining techniques were intensively used to discover, monitor, and optimize processes from event-logs without needing any priory model. However, the majority of the suggested algorithms have exhibited their limits (such as discovering nested loops, managing duplicate and hidden tasks as well as dealing with concurrent processes). In parallel, recent advances in the Artificial Intelligence (AI) discipline have generated a great deal of enthusiasm in a large spectrum of research area. In this perspective, AI methods emerge as one of the pillars to overcome the drawbacks of the conventional approaches allowing anomalies detection, prediction and recommendation tasks on ongoing process instances at run-time.
The aim of this work is to explore towards the use of AI techniques in the field of business process mining by presenting a state-of-the-art review ranging from traditional PM approaches to AI ones, as well as outlining a prospective road-map for mining business process models basing on AI techniques.

Supporting Institution

8 mai 45 university guelma, Algeria

References

  • [1]Van Der Aalst, Wil MP. Business process management: a comprehensive survey. International Scholarly Research Notices, (2013). vol. 2013. https://doi.org/10.1155/2013/507984
  • [2]Xu, Jiajie, Liu, Chengfei, et Zhoa, Xiaohui. Resource allocation vs. business process improvement: How they impact on each other. International Conference on Business Process Management. Springer, Berlin, Heidelberg,( 2008). p. 228-243.10.1007/978-3-540-857587_18
  • [3] LI, Jingran, Tao, Fei, Cheng, Ying, et al. Big data in product lifecycle management. The International Journal of Advanced Manufacturing Technology,(2015), vol. 81, no 1, p. 667-684.https://doi.org/10.1007/s00170-015-7151-x
  • [4]Lismont, Jasmien, Vanthienen, Jan, Baesens, Bart, et al. Defining analytics maturityindicators: A survey approach. International Journal of Information Management, (2017), vol. 37, no3, p. 114-124.https://doi.org/10.1016/j.ijinfomgt.2016.12.003.
  • [5]Delen, Dursun et Ram, Sudha. Research challenges and opportunities in business analytics. Journal of Business Analytics,(2018) , vol. 1, no 1, p. 2-12.https://doi.org/10.1080/2573234X.2018.1507324.
  • [6]Mishra, Nishchol et Silakari, Sanjay. Predictive analytics: A survey, trends, applications, oppurtunities & challenges. International Journal of Computer Science and Information Technologies, ( 2012), vol. 3, no 3, p. 4434 -4438.
  • [7]Poornima, S. et Pushpalatha, M. A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks,(2020), vol. 1, p. 76-84.https://doi.org/10.1016/j.ijin.2020.07.001
  • [8]Handfield, Robert, Jeong, Seongkyoon, et Choi, Thomas. Emerging procurement technology:data analytics and cognitive analytics. International journal of physical distribution & logistics management,( 2019). Vol. 49 No. 10, pp. 972-1002. https://doi.org/10.1108/IJPDLM-11-2017-0348
  • [9]Tama, Bayu Adhi, Comuzzi, Marco, et Ko, Jonghyeon. An empirical investigation of different classifiers, encoding, and ensemble schemes for next event prediction using business process event logs. ACM Transactions on Intelligent Systems and Technology (TIST),(2020), vol. 11, no 6,p. 1-34.
  • [10] Tenschert, Johannes, Tang, Willi, et MATZNER, Martin. Enterprise System Capabilities for Organizational Change in the BPM Life Cycle. In: International Conference on Business Process Management. Springer, Cham,(2020). p. 70-82
  • [11]Szpyrka, Marcin, Matyasik, Piotr, Biernacki, Jerzy, et al. Hierarchical communication diagrams. Computing and Informatics,( 2016), vol. 35, no 1, p. 55-83.
  • [12]COSTA, Inaldo Capistrano et DE OLIVEIRA, José M. Parente. GO4SOA: Goal-Oriented Modeling for SOA. In : WEBIST (1).(2016). p. 247-254.
  • [13] Taymouri, Farbod, La rosa, Marcello, Dumas, Marlon, et al. Business process variantanalysis: Survey and classification. Knowledge-Based Systems,(2021), vol. 211, p. 106557.
  • [14]Zhu, Li, Yu, Fei Richard, Wang, Yige, et al. Big data analytics in intelligent transportationsystems: A survey. IEEE Transactions on Intelligent Transportation Systems,(2018), vol. 20, no 1, p.383-398. 10.1109/TITS.2018.2815678.
  • [15]Szelagowski, Marek. Evolution of the BPM Lifecycle. In: Federated Conference on ComputerScience and Information Systems.(2018). p. 205-211.
  • [16]Calvanese, Diego, Kalayci, Tahir Emre, Montali, Marco, et al.Ontology-based data accessfor extracting event logs from legacy data: The onprom tool and methodology. In: InternationalConference on Business Information Systems. Springer, Cham,(2017). p.220-236.
  • [17]Bozorgi, Zahra Dasht, Teinemaa, Irene, Dumas, Marlon, et al. Process mining meets causal machine learning: Discovering causal rules from event logs. In : 2020 2nd International Conferenceon Process Mining (ICPM). IEEE,(2020). p. 129-136. doi: 10.1109/ICPM49681.2020.00028.
  • [18]Manoj Kumar, M. V., Thomas, Likewin, et Annappa, B. Capturing the sudden concept drift inprocess mining. Algorithms &Theoriesfor the Analysis of Event Data (ATAED'15, Brussels,Belgium,(June 22-23, 2015), p. 132.
  • [19] Cook, Jonathan E. et Wolf, Alexander L. Automating process discovery through event-dataanalysis. In: 1995 17th InternationalConference on Software Engineering. IEEE,(1995). p. 73-73.doi: 10.1145/225014.225021.
  • [20]Verbeek, H. M. W., Buijs, J. C. A. M., Van Dongen, B. F., et al. Prom 6: The process miningtoolkit. Proc. of BPM Demonstration Track,(2010), vol. 615, p. 34-39.
  • [21]Gunther, C., Rozinat, Anne, Van Der Aalst, Wil MP, et al. Monitoring deployed applicationusage with process mining. BPM CenterReport BPM-08-11, 2008, no 2008, p. 1-8.
  • [22]DiFrancescomarino, Chiara, Dumas, Marlon, Federici, Marco, et al. Genetic algorithms forhyperparameter optimization in predictive business process monitoring. Information Systems,(2018),vol. 74, p. 67-83.https://doi.org/10.1016/j.is.2018.01.003.
  • [23]Van Dongen, Boudewijn F., De Medeiros, Ak Alves, et Wen, Lijie. Process mining:Overview and outlook of petri net discoveryalgorithms. transactions on petri nets and other models ofconcurrency II,(2009), p. 225-242.https://doi.org/10.1007/978-3-642-00899-3_13
  • [24]Van Der Aalst, Wil. Academic view: Development of the process mining discipline. In:Process Mining in Action. Springer, Cham,(2020). p. 181-196.
  • [25]Kocaoglu, Murat, Snyder, Christopher,Dimakis, Alexandros G., et al. Causalgan: Learningcausal implicit generative models withadversarial training, (2017),arXiv preprint arXiv:1709.02023.
  • [26]Sabour, Sara, Frosst, Nicholas, et Hinton, Geoffrey E. Dynamic routing between capsules,(2017),arXiv preprint arXiv:1710.09829.
  • [27]Leclair, Alexander, Haque, Sakib, Wu, Lingfei, et al. Improved code summarization via agraph neural network. In: Proceedings ofthe 28th International Conference on ProgramComprehension, (2020),p. 184 -195.
  • [28]Pegoraro, Marco, Uysal, Merih Seran, et Van Der Aalst, Wil Mp. Conformance checkingover uncertain event data. InformationSystems,(2021), p. 101810.https://doi.org/10.1016/j.is.2021.101810.
  • [29]Der Aalst, Van et Minig, W. Process. Discovery, Conformance and Enhancement of B.P.(2011). 1st edition.
  • [30]Creswell, Antonia, White, Tom, Dumoulin, Vincent, et al. Generative adversarial networks:An overview. IEEE Signal ProcessingMagazine,(2018), vol. 35, no 1, p. 53-65.
  • [31]Helm, Emmanuel et Paster, Ferdinand. First steps towards process mining in distributedhealth information systems.InternationalJournal of Electronics and Telecommunications,(2015), vol.61, p. 137-142.
  • [32]Mannhard, Felix, De Leoni, Massimiliano, et Reijers, Hajo A. Heuristic Mining Revamped:An Interactive, Data-aware, andConformance-aware Miner. In: BPM (Demos), (2017).
  • [33]De Medeiros, Ak Alves, Van Dongen, Boudewijn F., Van Der Aalst, Wil Mp, et al. Processmining: Extending the αalgorithm to mineshort loops,(2004). [34]Weijters, A. J. M. M., Van Der Aalst, Wil Mp, et De Medeiros, AK Alves. Process miningwith the heuristic's mineralgorithm.Technische Universiteit Eindhoven, Tech. Rep. WP,(2006), vol.166, p. 1-34.
  • [35]Sun, Shiliang, Cao, Zehui, Zhu, Han, et al. Asurvey of optimization methods from a machinelearning perspective. IEEEtransactions on cybernetics,(2019), vol. 50, no 8, p. 3668-3681. doi:10.1109/TCYB.2019.2950779.
  • [36]Anderson, Michael et Anderson, Susan Leigh. Machine ethics: Creating an ethicalintelligentagent. AI magazine,( 2007), vol. 28, no 4, p. 15-15.
  • [37]Morency, Louis-Philippe et Baltrusaitis, Tadas. Multimodal machine learning: integratinglanguage, vision and speech. In:Proceedings of the 55th Annual Meeting of the Assoc. forComputational Linguistics: Tutorial Abstracts, (2017). p. 3-5.
  • [38]Campbell, Colin, Sands, Sean, Ferraro, Carla, et al. From data to action: How marketers canleverage AI. Business Horizons,(2020), vol. 63, no 2, p. 227-243.
  • [39] Zhou, Zhi-Hua. A brief introduction to weakly supervised learning. National science review,(2018), vol. 5, no 1, p. 44-53.
  • [40] Usama, Muhammad, Qadir, Junaid, Raza, Aunn, et al. Unsupervised machine learning fornetworking: Techniques, applicationsand research challenges. IEEE access,(2019), vol. 7, p. 65579-65615. doi: 10.1109/ACCESS.2019.2916648.
  • [41] Hu, Junyan, Niu, Hanlin, Carrasco, Joaquin, et al. Voronoi-based multi-robot autonomousexploration in unknown environmentsvia DRL. IEEE Transactions on Vehicular Technology,(2020),vol. 69, no 12, p. 14413-14423.
  • [42] Lecun, Yann, Bengio, Yoshua, et Hinton, Geoffrey. Deep learning. nature,(2015), vol. 521,no 7553, p. 436-444.
  • [43] Albawi, Saad, Mohammed, Tareq Abed, et Al-zawi, Saad. Understanding of a convolutionalneural network. In: 2017InternationalConference on Engineering and Technology (ICET). Ieee,(2017). p. 1-6.
  • [44]Sabour, Sara, Frosst, Nicholas, et Hinton, Geoffrey E. Dynamic routing between capsules,(2017),arXiv preprint arXiv:1710.09829.
  • [45]Yin, Wenpeng, Kann, Katharina, Yu, Mo, et al. Comparative study of CNN and RNN fornatural language processing, (2017),arXivpreprint arXiv:1702.01923.
  • [46]Vaswani, Ashish, Shazzer, Noam, Parmar, Niki, et al. Attention is all you need. In : Advancesin neural information processingsystems, (2017),p. 5998-6008.
  • [47]Shi, Weijing et Rajkumar, Raj. Point-gnn: Graph neural network for 3d object detection in apoint cloud. In : Proceedings of theIEEE/CVF conference on computer visionand patternrecognition, (2020),p. 1711-1719.
  • [48]Oussidi, Achraf et Elhassouny, Azeddine. Deep generative models: Survey. In : 2018International Conference on IntelligentSystems and Computer Vision (ISCV). IEEE,(2018). p. 1-8.
  • [49]Arulkumaran, Kai, Deisenroth, Marc Peter, Brundage, Miles, et al. Deep reinforcementlearning: A brief survey. IEEE SignalProcessing Magazine,(2017), vol. 34, no 6, p. 26-38.
  • [50]Mendling, Jan, Baesens, Bart, Bernstein, Abraham, et al. Challenges of smart businessprocess management: An introduction tothe special issue.(2017).
  • [51]Yeshchenko, Anton, Di Ciccio, Claudio, Mendling, Jan, et al. Visual Drift Detection forSequence Data Analysis of BusinessProcesses. IEEE Transactions on Visualization and ComputerGraphics,(2021). doi: 10.1109/TVCG.2021.3050071.
  • [52]Pang, Guansong, Shen, Chunhua, CAO, Longbing, et al. Deep learning for anomalydetection: A review. ACM Computing Surveys(CSUR),(2021), vol. 54, no 2, p. 1-38.https://doi.org/10.1145/3439950
  • [53]Chalapathy, Raghavendra et Chawla, Sanjay. Deep learning for anomaly detection: A survey,(2019),arXiv preprintarXiv:1901.03407.
  • [54]Liu, Yonghui, MAO, Guohua, LEIVA, Víctor, et al. Diagnostic analytics for anautoregressive model under the skewnormal distribution. Mathematics,(2020), vol. 8, no 5, p. 693.
  • [55]Grahn, Kaj, Westerlund, Magnus, et Pulkkis, Göran. Analytics for network security: A surveyand taxonomy. In : Information fusionfor cyber-security analytics. Springer, Cham,(2017). p. 175-193.
  • [56]Bhatt, Sanjeev Kumar, et al. Survey on Big Data Analytics: Domain Areas and Features. In :2020 2nd International Conference onAdvances in Computing, Communication Control andNetworking (ICACCCN). IEEE,(2020). p. 254-258.
  • [57]Marquez-Chamorro, Alfonso Eduardo, Resinas, Manuel, et Ruiz-Cortes, Antonio. Predictivemonitoring of business processes: a survey. IEEE Transactions on Services Computing,(2017), vol.11, no 6, p. 962-977.
  • [58]De Leoni, Massimiliano, Dees, Marcus, et Reulink, Laurens.Design and Evaluation of aProcess-aware Recommender Systembased on Prescriptive Analytics. In : 2020 2nd InternationalConference on Process Mining (ICPM). IEEE,(2020). p. 9-16.10.1109/ICPM49681.2020.00013.
  • [59]Delias, Pavlos et Nguyen, Gia-Thi. Prototyping a business process improvement plan. Anevidence-based approach.Information Systems,(2021), p. 101812.https://doi.org/10.1016/j.is.2021.101812.
  • [60]Eili, Mansoureh Yari, Rezaeenour, Jalal, et Sani, Mohammadreza Fani. A SystematicLiterature Review on ProcessAwareRecommender Systems,(2021),arXiv preprintarXiv:2103.16654.
  • [61]Akter, Shahriar et Wamba, Samuel Fosso. Big data analytics in E-commerce: a systematicreview and agenda for futureresearch. Electronic Markets,(2016), vol. 26, no2, p. 173-194.10.1007/s12525-016-0219-0.
  • [62]Belhadi, Amine, Zkik, Karim, Cheherrafi, Anass, et al. Understanding big data analytics formanufacturing processes: insightsfrom literature review and multiple case studies. Computers &Industrial Engineering,(2019), vol. 137, p. 106099.https://doi.org/10.1016/j.cie.2019.106099.
  • [63]Galanti, Riccardo. Explainable Prescriptive Process Analytics. Computing,(2018), vol. 11, no6, p. 962-977.
  • [64]Seeliger, Alexander, Nolle, Timo, et Muhlhause, Max. ProcessExplorer: An InteractiveVisual Recommendation System for ProcessMining. In : KDD Workshop on Interactive DataExploration and Analytics.(2018).
  • [65]Weinzierl, Sven, Dunzer, Sebastian, Zilker, Sandra, et al. Prescriptive business processmonitoring for recommending next bestactions. In : International conference on business processmanagement. Springer, Cham,(2020). p. 193-209.
  • [66]Goldenberg, Dmitri, Kofman, Kostia, Albert, Javier, et al. Personalization in Practice:Methods and Applications. In : Proceedingsofthe 14th ACM International Conference on WebSearch and Data Mining.(2021). p. 1123-1126.https://doi.org/10.1145/3437963.3441657.
  • [67]Chicaiza, Janneth et Valdiviezo-Diaz, Priscila. A Comprehensive Survey of KnowledgeGraph-Based Recommender Systems:Technologies, Development, and Contributions. Information,(2021), vol. 12, no 6, p. 232.https://doi.org/10.3390/info12060232.
  • [68]Wang, Hongbing Xiaojun, Hu, Xingguo, et al. A multi-agent reinforcement learning approachto dynamic service composition.Information Sciences,(2016), vol. 363, p. 96-119.
  • [69]Dai, Hanjun, Tian, et al. Adversarial attack on graph structured data. In : Internationalconference on machine learning. PMLR,(2018). p. 1115-1124.
  • [70]Tovarnak, Daniel et Pitner, Tomáš. Normalization of unstructured log data into streams ofstructured event objects. In : 2019IFIP/IEEE Symposium on Integrated Network and ServiceManagement (IM). IEEE,(2019). p. 671-676.
  • [71]Nolle, Timo, Alexander, et Max. BINet: multivariate business process anomaly detectionusing deep learning. In : InternationalConference on Business Process Management. Springer, Cham,(2018).p. 271-287.
  • [72]Pan, Zhaoqing, YU, Weijie, YI, Xiaokai, et al. Recent progress on generative adversarialnetworks (GANs): A survey. IEEE Access,(2019), vol. 7, p. 36322-36333.
  • [73]Zhao, Dongfang, Liu, Shulin, Gu, Dan, et al. Enhanced data-driven fault diagnosis formachines with small and unbalanced data based on variational auto-encoder. Measurement Scienceand Technology,(2019), vol. 31, no 3, p. 035004.
  • [74]Nolle, Timo, Stefan, Alexander, et al. Analyzing business process anomalies usingautoencoders. Machine Learning,(2018), vol.107, no 11, p. 1875-1893.
  • [75]Krajsic, Philippe et Bogdan. Variational Autoencoder for Anomaly Detection in Event Datain Online Process Mining.(2021).
  • [76]Di Mauro, Nicola, APPICE, Annalisa, et Basile, Teresa Ma.Activity prediction of businessprocess instances with inception CNNmodels. In: International conference of the italian associationfor AI. Springer, Cham,(2019). p. 348-361.
  • [77]Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, et al. Generative adversarial nets.Advances in neural informationprocessing systems,(2014), vol. 27.
  • [78]Taymouri, Farbod, Marcello, Erfani, Sarah, et al. Predictive business process monitoring viagenerative adversarial nets: The caseof next event prediction. In: International Conference on BPM.Springer, Cham,(2020). p. 237-256.
  • [79]Moon, Junhyung, Park, Gyuyoung, et Jongpil. POP-ON: Prediction of Process Using One-Way Language Model Based on NLPApproach. Applied Sciences,(2021), vol. 11, no 2, p. 864.
  • [80]Bukhsh, Zaharah A., Saeed, Aaqib, et Remco M. ProcessTransformer: Predictive BusinessProcess Monitoring with TransformerNetwork, (2021),arXiv preprint arXiv:2104.00721.
  • [81]Himanen, Lauri, Amber, FOSTER, Adam Stuart, et al. Data‐driven materials science: status,challenges, and perspectives.Advanced Science,(2019), vol. 6, no 21, p. 1900808.
  • [82]Silvander, Johan. Business process optimization with reinforcement learning.In: InternationalSymposium on Business Modelingand Software Design. Springer, Cham,(2019). p. 203-212.
  • [83]Żbikowski, Kamil, Michał, et Piotr. Deep Reinforcement Learning for Resource Allocation inBusiness Processes, (2021),arXivpreprint arXiv:2104.00541.
  • [84]Arias, Michael, Saavedra, Rodrigo, Marques, Maira R., et al. Human resource allocation inbusiness process management andprocess mining: A systematic mapping study. ManagementDecision,(2018).
Year 2022, Volume: 5 Issue: 1, 27 - 51, 28.06.2022
https://doi.org/10.53508/ijiam.1036234

Abstract

References

  • [1]Van Der Aalst, Wil MP. Business process management: a comprehensive survey. International Scholarly Research Notices, (2013). vol. 2013. https://doi.org/10.1155/2013/507984
  • [2]Xu, Jiajie, Liu, Chengfei, et Zhoa, Xiaohui. Resource allocation vs. business process improvement: How they impact on each other. International Conference on Business Process Management. Springer, Berlin, Heidelberg,( 2008). p. 228-243.10.1007/978-3-540-857587_18
  • [3] LI, Jingran, Tao, Fei, Cheng, Ying, et al. Big data in product lifecycle management. The International Journal of Advanced Manufacturing Technology,(2015), vol. 81, no 1, p. 667-684.https://doi.org/10.1007/s00170-015-7151-x
  • [4]Lismont, Jasmien, Vanthienen, Jan, Baesens, Bart, et al. Defining analytics maturityindicators: A survey approach. International Journal of Information Management, (2017), vol. 37, no3, p. 114-124.https://doi.org/10.1016/j.ijinfomgt.2016.12.003.
  • [5]Delen, Dursun et Ram, Sudha. Research challenges and opportunities in business analytics. Journal of Business Analytics,(2018) , vol. 1, no 1, p. 2-12.https://doi.org/10.1080/2573234X.2018.1507324.
  • [6]Mishra, Nishchol et Silakari, Sanjay. Predictive analytics: A survey, trends, applications, oppurtunities & challenges. International Journal of Computer Science and Information Technologies, ( 2012), vol. 3, no 3, p. 4434 -4438.
  • [7]Poornima, S. et Pushpalatha, M. A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks,(2020), vol. 1, p. 76-84.https://doi.org/10.1016/j.ijin.2020.07.001
  • [8]Handfield, Robert, Jeong, Seongkyoon, et Choi, Thomas. Emerging procurement technology:data analytics and cognitive analytics. International journal of physical distribution & logistics management,( 2019). Vol. 49 No. 10, pp. 972-1002. https://doi.org/10.1108/IJPDLM-11-2017-0348
  • [9]Tama, Bayu Adhi, Comuzzi, Marco, et Ko, Jonghyeon. An empirical investigation of different classifiers, encoding, and ensemble schemes for next event prediction using business process event logs. ACM Transactions on Intelligent Systems and Technology (TIST),(2020), vol. 11, no 6,p. 1-34.
  • [10] Tenschert, Johannes, Tang, Willi, et MATZNER, Martin. Enterprise System Capabilities for Organizational Change in the BPM Life Cycle. In: International Conference on Business Process Management. Springer, Cham,(2020). p. 70-82
  • [11]Szpyrka, Marcin, Matyasik, Piotr, Biernacki, Jerzy, et al. Hierarchical communication diagrams. Computing and Informatics,( 2016), vol. 35, no 1, p. 55-83.
  • [12]COSTA, Inaldo Capistrano et DE OLIVEIRA, José M. Parente. GO4SOA: Goal-Oriented Modeling for SOA. In : WEBIST (1).(2016). p. 247-254.
  • [13] Taymouri, Farbod, La rosa, Marcello, Dumas, Marlon, et al. Business process variantanalysis: Survey and classification. Knowledge-Based Systems,(2021), vol. 211, p. 106557.
  • [14]Zhu, Li, Yu, Fei Richard, Wang, Yige, et al. Big data analytics in intelligent transportationsystems: A survey. IEEE Transactions on Intelligent Transportation Systems,(2018), vol. 20, no 1, p.383-398. 10.1109/TITS.2018.2815678.
  • [15]Szelagowski, Marek. Evolution of the BPM Lifecycle. In: Federated Conference on ComputerScience and Information Systems.(2018). p. 205-211.
  • [16]Calvanese, Diego, Kalayci, Tahir Emre, Montali, Marco, et al.Ontology-based data accessfor extracting event logs from legacy data: The onprom tool and methodology. In: InternationalConference on Business Information Systems. Springer, Cham,(2017). p.220-236.
  • [17]Bozorgi, Zahra Dasht, Teinemaa, Irene, Dumas, Marlon, et al. Process mining meets causal machine learning: Discovering causal rules from event logs. In : 2020 2nd International Conferenceon Process Mining (ICPM). IEEE,(2020). p. 129-136. doi: 10.1109/ICPM49681.2020.00028.
  • [18]Manoj Kumar, M. V., Thomas, Likewin, et Annappa, B. Capturing the sudden concept drift inprocess mining. Algorithms &Theoriesfor the Analysis of Event Data (ATAED'15, Brussels,Belgium,(June 22-23, 2015), p. 132.
  • [19] Cook, Jonathan E. et Wolf, Alexander L. Automating process discovery through event-dataanalysis. In: 1995 17th InternationalConference on Software Engineering. IEEE,(1995). p. 73-73.doi: 10.1145/225014.225021.
  • [20]Verbeek, H. M. W., Buijs, J. C. A. M., Van Dongen, B. F., et al. Prom 6: The process miningtoolkit. Proc. of BPM Demonstration Track,(2010), vol. 615, p. 34-39.
  • [21]Gunther, C., Rozinat, Anne, Van Der Aalst, Wil MP, et al. Monitoring deployed applicationusage with process mining. BPM CenterReport BPM-08-11, 2008, no 2008, p. 1-8.
  • [22]DiFrancescomarino, Chiara, Dumas, Marlon, Federici, Marco, et al. Genetic algorithms forhyperparameter optimization in predictive business process monitoring. Information Systems,(2018),vol. 74, p. 67-83.https://doi.org/10.1016/j.is.2018.01.003.
  • [23]Van Dongen, Boudewijn F., De Medeiros, Ak Alves, et Wen, Lijie. Process mining:Overview and outlook of petri net discoveryalgorithms. transactions on petri nets and other models ofconcurrency II,(2009), p. 225-242.https://doi.org/10.1007/978-3-642-00899-3_13
  • [24]Van Der Aalst, Wil. Academic view: Development of the process mining discipline. In:Process Mining in Action. Springer, Cham,(2020). p. 181-196.
  • [25]Kocaoglu, Murat, Snyder, Christopher,Dimakis, Alexandros G., et al. Causalgan: Learningcausal implicit generative models withadversarial training, (2017),arXiv preprint arXiv:1709.02023.
  • [26]Sabour, Sara, Frosst, Nicholas, et Hinton, Geoffrey E. Dynamic routing between capsules,(2017),arXiv preprint arXiv:1710.09829.
  • [27]Leclair, Alexander, Haque, Sakib, Wu, Lingfei, et al. Improved code summarization via agraph neural network. In: Proceedings ofthe 28th International Conference on ProgramComprehension, (2020),p. 184 -195.
  • [28]Pegoraro, Marco, Uysal, Merih Seran, et Van Der Aalst, Wil Mp. Conformance checkingover uncertain event data. InformationSystems,(2021), p. 101810.https://doi.org/10.1016/j.is.2021.101810.
  • [29]Der Aalst, Van et Minig, W. Process. Discovery, Conformance and Enhancement of B.P.(2011). 1st edition.
  • [30]Creswell, Antonia, White, Tom, Dumoulin, Vincent, et al. Generative adversarial networks:An overview. IEEE Signal ProcessingMagazine,(2018), vol. 35, no 1, p. 53-65.
  • [31]Helm, Emmanuel et Paster, Ferdinand. First steps towards process mining in distributedhealth information systems.InternationalJournal of Electronics and Telecommunications,(2015), vol.61, p. 137-142.
  • [32]Mannhard, Felix, De Leoni, Massimiliano, et Reijers, Hajo A. Heuristic Mining Revamped:An Interactive, Data-aware, andConformance-aware Miner. In: BPM (Demos), (2017).
  • [33]De Medeiros, Ak Alves, Van Dongen, Boudewijn F., Van Der Aalst, Wil Mp, et al. Processmining: Extending the αalgorithm to mineshort loops,(2004). [34]Weijters, A. J. M. M., Van Der Aalst, Wil Mp, et De Medeiros, AK Alves. Process miningwith the heuristic's mineralgorithm.Technische Universiteit Eindhoven, Tech. Rep. WP,(2006), vol.166, p. 1-34.
  • [35]Sun, Shiliang, Cao, Zehui, Zhu, Han, et al. Asurvey of optimization methods from a machinelearning perspective. IEEEtransactions on cybernetics,(2019), vol. 50, no 8, p. 3668-3681. doi:10.1109/TCYB.2019.2950779.
  • [36]Anderson, Michael et Anderson, Susan Leigh. Machine ethics: Creating an ethicalintelligentagent. AI magazine,( 2007), vol. 28, no 4, p. 15-15.
  • [37]Morency, Louis-Philippe et Baltrusaitis, Tadas. Multimodal machine learning: integratinglanguage, vision and speech. In:Proceedings of the 55th Annual Meeting of the Assoc. forComputational Linguistics: Tutorial Abstracts, (2017). p. 3-5.
  • [38]Campbell, Colin, Sands, Sean, Ferraro, Carla, et al. From data to action: How marketers canleverage AI. Business Horizons,(2020), vol. 63, no 2, p. 227-243.
  • [39] Zhou, Zhi-Hua. A brief introduction to weakly supervised learning. National science review,(2018), vol. 5, no 1, p. 44-53.
  • [40] Usama, Muhammad, Qadir, Junaid, Raza, Aunn, et al. Unsupervised machine learning fornetworking: Techniques, applicationsand research challenges. IEEE access,(2019), vol. 7, p. 65579-65615. doi: 10.1109/ACCESS.2019.2916648.
  • [41] Hu, Junyan, Niu, Hanlin, Carrasco, Joaquin, et al. Voronoi-based multi-robot autonomousexploration in unknown environmentsvia DRL. IEEE Transactions on Vehicular Technology,(2020),vol. 69, no 12, p. 14413-14423.
  • [42] Lecun, Yann, Bengio, Yoshua, et Hinton, Geoffrey. Deep learning. nature,(2015), vol. 521,no 7553, p. 436-444.
  • [43] Albawi, Saad, Mohammed, Tareq Abed, et Al-zawi, Saad. Understanding of a convolutionalneural network. In: 2017InternationalConference on Engineering and Technology (ICET). Ieee,(2017). p. 1-6.
  • [44]Sabour, Sara, Frosst, Nicholas, et Hinton, Geoffrey E. Dynamic routing between capsules,(2017),arXiv preprint arXiv:1710.09829.
  • [45]Yin, Wenpeng, Kann, Katharina, Yu, Mo, et al. Comparative study of CNN and RNN fornatural language processing, (2017),arXivpreprint arXiv:1702.01923.
  • [46]Vaswani, Ashish, Shazzer, Noam, Parmar, Niki, et al. Attention is all you need. In : Advancesin neural information processingsystems, (2017),p. 5998-6008.
  • [47]Shi, Weijing et Rajkumar, Raj. Point-gnn: Graph neural network for 3d object detection in apoint cloud. In : Proceedings of theIEEE/CVF conference on computer visionand patternrecognition, (2020),p. 1711-1719.
  • [48]Oussidi, Achraf et Elhassouny, Azeddine. Deep generative models: Survey. In : 2018International Conference on IntelligentSystems and Computer Vision (ISCV). IEEE,(2018). p. 1-8.
  • [49]Arulkumaran, Kai, Deisenroth, Marc Peter, Brundage, Miles, et al. Deep reinforcementlearning: A brief survey. IEEE SignalProcessing Magazine,(2017), vol. 34, no 6, p. 26-38.
  • [50]Mendling, Jan, Baesens, Bart, Bernstein, Abraham, et al. Challenges of smart businessprocess management: An introduction tothe special issue.(2017).
  • [51]Yeshchenko, Anton, Di Ciccio, Claudio, Mendling, Jan, et al. Visual Drift Detection forSequence Data Analysis of BusinessProcesses. IEEE Transactions on Visualization and ComputerGraphics,(2021). doi: 10.1109/TVCG.2021.3050071.
  • [52]Pang, Guansong, Shen, Chunhua, CAO, Longbing, et al. Deep learning for anomalydetection: A review. ACM Computing Surveys(CSUR),(2021), vol. 54, no 2, p. 1-38.https://doi.org/10.1145/3439950
  • [53]Chalapathy, Raghavendra et Chawla, Sanjay. Deep learning for anomaly detection: A survey,(2019),arXiv preprintarXiv:1901.03407.
  • [54]Liu, Yonghui, MAO, Guohua, LEIVA, Víctor, et al. Diagnostic analytics for anautoregressive model under the skewnormal distribution. Mathematics,(2020), vol. 8, no 5, p. 693.
  • [55]Grahn, Kaj, Westerlund, Magnus, et Pulkkis, Göran. Analytics for network security: A surveyand taxonomy. In : Information fusionfor cyber-security analytics. Springer, Cham,(2017). p. 175-193.
  • [56]Bhatt, Sanjeev Kumar, et al. Survey on Big Data Analytics: Domain Areas and Features. In :2020 2nd International Conference onAdvances in Computing, Communication Control andNetworking (ICACCCN). IEEE,(2020). p. 254-258.
  • [57]Marquez-Chamorro, Alfonso Eduardo, Resinas, Manuel, et Ruiz-Cortes, Antonio. Predictivemonitoring of business processes: a survey. IEEE Transactions on Services Computing,(2017), vol.11, no 6, p. 962-977.
  • [58]De Leoni, Massimiliano, Dees, Marcus, et Reulink, Laurens.Design and Evaluation of aProcess-aware Recommender Systembased on Prescriptive Analytics. In : 2020 2nd InternationalConference on Process Mining (ICPM). IEEE,(2020). p. 9-16.10.1109/ICPM49681.2020.00013.
  • [59]Delias, Pavlos et Nguyen, Gia-Thi. Prototyping a business process improvement plan. Anevidence-based approach.Information Systems,(2021), p. 101812.https://doi.org/10.1016/j.is.2021.101812.
  • [60]Eili, Mansoureh Yari, Rezaeenour, Jalal, et Sani, Mohammadreza Fani. A SystematicLiterature Review on ProcessAwareRecommender Systems,(2021),arXiv preprintarXiv:2103.16654.
  • [61]Akter, Shahriar et Wamba, Samuel Fosso. Big data analytics in E-commerce: a systematicreview and agenda for futureresearch. Electronic Markets,(2016), vol. 26, no2, p. 173-194.10.1007/s12525-016-0219-0.
  • [62]Belhadi, Amine, Zkik, Karim, Cheherrafi, Anass, et al. Understanding big data analytics formanufacturing processes: insightsfrom literature review and multiple case studies. Computers &Industrial Engineering,(2019), vol. 137, p. 106099.https://doi.org/10.1016/j.cie.2019.106099.
  • [63]Galanti, Riccardo. Explainable Prescriptive Process Analytics. Computing,(2018), vol. 11, no6, p. 962-977.
  • [64]Seeliger, Alexander, Nolle, Timo, et Muhlhause, Max. ProcessExplorer: An InteractiveVisual Recommendation System for ProcessMining. In : KDD Workshop on Interactive DataExploration and Analytics.(2018).
  • [65]Weinzierl, Sven, Dunzer, Sebastian, Zilker, Sandra, et al. Prescriptive business processmonitoring for recommending next bestactions. In : International conference on business processmanagement. Springer, Cham,(2020). p. 193-209.
  • [66]Goldenberg, Dmitri, Kofman, Kostia, Albert, Javier, et al. Personalization in Practice:Methods and Applications. In : Proceedingsofthe 14th ACM International Conference on WebSearch and Data Mining.(2021). p. 1123-1126.https://doi.org/10.1145/3437963.3441657.
  • [67]Chicaiza, Janneth et Valdiviezo-Diaz, Priscila. A Comprehensive Survey of KnowledgeGraph-Based Recommender Systems:Technologies, Development, and Contributions. Information,(2021), vol. 12, no 6, p. 232.https://doi.org/10.3390/info12060232.
  • [68]Wang, Hongbing Xiaojun, Hu, Xingguo, et al. A multi-agent reinforcement learning approachto dynamic service composition.Information Sciences,(2016), vol. 363, p. 96-119.
  • [69]Dai, Hanjun, Tian, et al. Adversarial attack on graph structured data. In : Internationalconference on machine learning. PMLR,(2018). p. 1115-1124.
  • [70]Tovarnak, Daniel et Pitner, Tomáš. Normalization of unstructured log data into streams ofstructured event objects. In : 2019IFIP/IEEE Symposium on Integrated Network and ServiceManagement (IM). IEEE,(2019). p. 671-676.
  • [71]Nolle, Timo, Alexander, et Max. BINet: multivariate business process anomaly detectionusing deep learning. In : InternationalConference on Business Process Management. Springer, Cham,(2018).p. 271-287.
  • [72]Pan, Zhaoqing, YU, Weijie, YI, Xiaokai, et al. Recent progress on generative adversarialnetworks (GANs): A survey. IEEE Access,(2019), vol. 7, p. 36322-36333.
  • [73]Zhao, Dongfang, Liu, Shulin, Gu, Dan, et al. Enhanced data-driven fault diagnosis formachines with small and unbalanced data based on variational auto-encoder. Measurement Scienceand Technology,(2019), vol. 31, no 3, p. 035004.
  • [74]Nolle, Timo, Stefan, Alexander, et al. Analyzing business process anomalies usingautoencoders. Machine Learning,(2018), vol.107, no 11, p. 1875-1893.
  • [75]Krajsic, Philippe et Bogdan. Variational Autoencoder for Anomaly Detection in Event Datain Online Process Mining.(2021).
  • [76]Di Mauro, Nicola, APPICE, Annalisa, et Basile, Teresa Ma.Activity prediction of businessprocess instances with inception CNNmodels. In: International conference of the italian associationfor AI. Springer, Cham,(2019). p. 348-361.
  • [77]Goodfellow, Ian, Pouget-Abadie, Jean, Mirza, Mehdi, et al. Generative adversarial nets.Advances in neural informationprocessing systems,(2014), vol. 27.
  • [78]Taymouri, Farbod, Marcello, Erfani, Sarah, et al. Predictive business process monitoring viagenerative adversarial nets: The caseof next event prediction. In: International Conference on BPM.Springer, Cham,(2020). p. 237-256.
  • [79]Moon, Junhyung, Park, Gyuyoung, et Jongpil. POP-ON: Prediction of Process Using One-Way Language Model Based on NLPApproach. Applied Sciences,(2021), vol. 11, no 2, p. 864.
  • [80]Bukhsh, Zaharah A., Saeed, Aaqib, et Remco M. ProcessTransformer: Predictive BusinessProcess Monitoring with TransformerNetwork, (2021),arXiv preprint arXiv:2104.00721.
  • [81]Himanen, Lauri, Amber, FOSTER, Adam Stuart, et al. Data‐driven materials science: status,challenges, and perspectives.Advanced Science,(2019), vol. 6, no 21, p. 1900808.
  • [82]Silvander, Johan. Business process optimization with reinforcement learning.In: InternationalSymposium on Business Modelingand Software Design. Springer, Cham,(2019). p. 203-212.
  • [83]Żbikowski, Kamil, Michał, et Piotr. Deep Reinforcement Learning for Resource Allocation inBusiness Processes, (2021),arXivpreprint arXiv:2104.00541.
  • [84]Arias, Michael, Saavedra, Rodrigo, Marques, Maira R., et al. Human resource allocation inbusiness process management andprocess mining: A systematic mapping study. ManagementDecision,(2018).
There are 83 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Articles
Authors

Afifi Chaima

Ali Khebızı 0000-0002-5372-8201

Publication Date June 28, 2022
Acceptance Date January 6, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Chaima, A., & Khebızı, A. (2022). A Road-map for Mining Business Process Models via Artificial Intelligence Techniques. International Journal of Informatics and Applied Mathematics, 5(1), 27-51. https://doi.org/10.53508/ijiam.1036234
AMA Chaima A, Khebızı A. A Road-map for Mining Business Process Models via Artificial Intelligence Techniques. IJIAM. June 2022;5(1):27-51. doi:10.53508/ijiam.1036234
Chicago Chaima, Afifi, and Ali Khebızı. “A Road-Map for Mining Business Process Models via Artificial Intelligence Techniques”. International Journal of Informatics and Applied Mathematics 5, no. 1 (June 2022): 27-51. https://doi.org/10.53508/ijiam.1036234.
EndNote Chaima A, Khebızı A (June 1, 2022) A Road-map for Mining Business Process Models via Artificial Intelligence Techniques. International Journal of Informatics and Applied Mathematics 5 1 27–51.
IEEE A. Chaima and A. Khebızı, “A Road-map for Mining Business Process Models via Artificial Intelligence Techniques”, IJIAM, vol. 5, no. 1, pp. 27–51, 2022, doi: 10.53508/ijiam.1036234.
ISNAD Chaima, Afifi - Khebızı, Ali. “A Road-Map for Mining Business Process Models via Artificial Intelligence Techniques”. International Journal of Informatics and Applied Mathematics 5/1 (June 2022), 27-51. https://doi.org/10.53508/ijiam.1036234.
JAMA Chaima A, Khebızı A. A Road-map for Mining Business Process Models via Artificial Intelligence Techniques. IJIAM. 2022;5:27–51.
MLA Chaima, Afifi and Ali Khebızı. “A Road-Map for Mining Business Process Models via Artificial Intelligence Techniques”. International Journal of Informatics and Applied Mathematics, vol. 5, no. 1, 2022, pp. 27-51, doi:10.53508/ijiam.1036234.
Vancouver Chaima A, Khebızı A. A Road-map for Mining Business Process Models via Artificial Intelligence Techniques. IJIAM. 2022;5(1):27-51.

International Journal of Informatics and Applied Mathematics