Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 1, 1 - 21, 03.07.2025
https://doi.org/10.53508/ijiam.1521759

Abstract

References

  • Shuhong Wang and Ximin Liu. New hermite-hadamard type inequalities for n-times differentiable and s-logarithmically preinvex functions. In Abstract and Applied Analysis, volume 2014, page 725987. Wiley Online Library, 2014.
  • Bo-Yan Xi and Feng Qi. Some integral inequalities of hermite-hadamard type for s-logarithmically convex functions. Acta Math. Sci. Ser. A Chin. Ed, 35(3), 2015.
  • Sever Silvestru Dragomir. Inequalities of hermite-hadamard type for h-convex functions on linear spaces. Proyecciones (Antofagasta), 34(4):323–341, 2015.
  • Muhammad Amer Latif and Sever Silvestru Dragomir. On hermite-hadamard type integral inequalities for n-times differentiable s-logarithmically convex functions with applications. Appl. Math. Inf. Sci, 10: 1747–1755, 2016.
  • Tian-Yu Zhang, Ai-Ping Ji, and Feng Qi. Integral inequalities of hermite—hadamard type for products of s-logarithmically convex functions. Montes Taurus Journal of Pure and Applied Mathematics, 5(2):15, 2023.
  • Ch Hermite et al. Sur deux limites d'une intégrale définie. Mathesis, 3(82):6, 1883.
  • Wolfgang W Breckner. Stetigkeitsaussagen für eine klasse verallgemeinerter konvexer funktionen in topologischen linearen räumen. Publ. Inst. Math. 1978.
  • Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
  • Pietro Cerone, Sever S Dragomir, and John Roumeliotis. An inequality of ostrowski-grüss type for twice differentiable mappings and applications in numerical integration. RGMIA research report collection, 1 (2), 1998.
  • Ahmet Ocak Akdemir and Mevlut Tunc. On some integral inequalities for s-logarithmically convex functions and their applications. arXiv preprint, arXiv:1212.1584, 2012.
  • Sever S Dragomir, Pietro Cerone, and Anthony Sofo. Some remarks on the trapezoid rule in numerical integration. RGMIA research report collection, 2(5), 1999.
  • Duygu Dönmez Demir and Gülsüm Sanal. Perturbed trapezoid inequalities for nth order differentiable convex functions and their applications. AIMS Mathematics, 2020.

SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION

Year 2025, Volume: 8 Issue: 1, 1 - 21, 03.07.2025
https://doi.org/10.53508/ijiam.1521759

Abstract

Some applications on s-logarithmic convex functions are introduced in this study. s-logarithmic convex functions are used to model risk-averse preferences in economics and finance. They play a role in optimization problems, particularly in nonlinear programming and convex optimization functions. Besides, they are encountered in information theory, machine learning, finance and risk management. These applications highlight importance of s-logarithmic convex functions in various domains, where their mathematical properties are strengthen to model complex phenomena and solve practical problems. s-logarithmic convex functions are particularly useful in numerical integration due to their smooth and well-behaved nature. This study focuses on the role of s-logarithmic functions in determining the upper limit for error in numerical integration. The smoothness and well-behaved derivatives of s-logarithmic convex functions facilitate error analysis in numerical integration.

Thanks

The authors would like to thank Prof. Dr. Ali Mutlu for his contributions to the editing of the article.

References

  • Shuhong Wang and Ximin Liu. New hermite-hadamard type inequalities for n-times differentiable and s-logarithmically preinvex functions. In Abstract and Applied Analysis, volume 2014, page 725987. Wiley Online Library, 2014.
  • Bo-Yan Xi and Feng Qi. Some integral inequalities of hermite-hadamard type for s-logarithmically convex functions. Acta Math. Sci. Ser. A Chin. Ed, 35(3), 2015.
  • Sever Silvestru Dragomir. Inequalities of hermite-hadamard type for h-convex functions on linear spaces. Proyecciones (Antofagasta), 34(4):323–341, 2015.
  • Muhammad Amer Latif and Sever Silvestru Dragomir. On hermite-hadamard type integral inequalities for n-times differentiable s-logarithmically convex functions with applications. Appl. Math. Inf. Sci, 10: 1747–1755, 2016.
  • Tian-Yu Zhang, Ai-Ping Ji, and Feng Qi. Integral inequalities of hermite—hadamard type for products of s-logarithmically convex functions. Montes Taurus Journal of Pure and Applied Mathematics, 5(2):15, 2023.
  • Ch Hermite et al. Sur deux limites d'une intégrale définie. Mathesis, 3(82):6, 1883.
  • Wolfgang W Breckner. Stetigkeitsaussagen für eine klasse verallgemeinerter konvexer funktionen in topologischen linearen räumen. Publ. Inst. Math. 1978.
  • Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
  • Pietro Cerone, Sever S Dragomir, and John Roumeliotis. An inequality of ostrowski-grüss type for twice differentiable mappings and applications in numerical integration. RGMIA research report collection, 1 (2), 1998.
  • Ahmet Ocak Akdemir and Mevlut Tunc. On some integral inequalities for s-logarithmically convex functions and their applications. arXiv preprint, arXiv:1212.1584, 2012.
  • Sever S Dragomir, Pietro Cerone, and Anthony Sofo. Some remarks on the trapezoid rule in numerical integration. RGMIA research report collection, 2(5), 1999.
  • Duygu Dönmez Demir and Gülsüm Sanal. Perturbed trapezoid inequalities for nth order differentiable convex functions and their applications. AIMS Mathematics, 2020.
There are 12 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence (Other)
Journal Section Articles
Authors

Duygu Dönmez Demir

Gülsüm Şanal 0000-0002-9726-4947

Publication Date July 3, 2025
Submission Date August 5, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Dönmez Demir, D., & Şanal, G. (2025). SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION. International Journal of Informatics and Applied Mathematics, 8(1), 1-21. https://doi.org/10.53508/ijiam.1521759
AMA Dönmez Demir D, Şanal G. SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION. IJIAM. July 2025;8(1):1-21. doi:10.53508/ijiam.1521759
Chicago Dönmez Demir, Duygu, and Gülsüm Şanal. “SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION”. International Journal of Informatics and Applied Mathematics 8, no. 1 (July 2025): 1-21. https://doi.org/10.53508/ijiam.1521759.
EndNote Dönmez Demir D, Şanal G (July 1, 2025) SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION. International Journal of Informatics and Applied Mathematics 8 1 1–21.
IEEE D. Dönmez Demir and G. Şanal, “SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION”, IJIAM, vol. 8, no. 1, pp. 1–21, 2025, doi: 10.53508/ijiam.1521759.
ISNAD Dönmez Demir, Duygu - Şanal, Gülsüm. “SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION”. International Journal of Informatics and Applied Mathematics 8/1 (July2025), 1-21. https://doi.org/10.53508/ijiam.1521759.
JAMA Dönmez Demir D, Şanal G. SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION. IJIAM. 2025;8:1–21.
MLA Dönmez Demir, Duygu and Gülsüm Şanal. “SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION”. International Journal of Informatics and Applied Mathematics, vol. 8, no. 1, 2025, pp. 1-21, doi:10.53508/ijiam.1521759.
Vancouver Dönmez Demir D, Şanal G. SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION. IJIAM. 2025;8(1):1-21.

International Journal of Informatics and Applied Mathematics