Research Article
BibTex RIS Cite

SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu

Year 2022, , 170 - 182, 28.06.2022
https://doi.org/10.46460/ijiea.1086169

Abstract

Mikro ve nano yapılı optoelektronik malzeme endüstrisinin temelini oluşturan, teknolojik ve bilimsel araştırmalarda önemli bir yer tutan ince filmler, son zamanlarda en çok çalışılan güncel araştırma konulardan biridir. Yarıiletken özelliğe sahip metal oksitlerin üretiminde son yıllarda hızlı bir gelişim sergilenmesi rağmen günümüzde ince filmler büyük ölçekli üretim için pek de uygun olmayan döndürerek kaplama (spin-coater) tekniği ile hazırlanmaktadır. Bu çalışmada birçok optoelektronik aygıt teknolojisinin ihtiyaç duyduğu SnO2 metal oksit malzemesi ticari boyutlarda, uygun kalınlıkta ve iyi morfolojik/optik özelliklere sahip olarak slot-die kaplama tekniği ile üretilerek büyütme optimizasyonu gerçekleştirilmiştir. Mevcut slot-die sistemi üzerinde çözelti konsantrasyonu, başlık-alttaş mesafesi, çözelti beslem oranı, kaplama hızı, tabla sıcaklığı gibi çeşitli parametreler değiştirilerek ortam koşullarında en uygun kaplama koşulları belirlenmiştir. SnO2 ince filmler büyük alanlı (25 x 75 mm) alttaşlara başarılı bir şekilde hızlı ve ekonomik slot-die tekniği ile kaplanmış ve literatürde yaygın olarak kullanılan döndürerek kaplama tekniği ile üretilen filmler ile kıyaslanmıştır. Üretilen ince filmlerin optik karakterizasyonları UV-Vis ve fotolüminesans (PL) spektrofotometreleri kullanılarak yapılmıştır. Yüzey ve kesit alan morfolojisi alan emisyon taramalı elektron mikroskobu (FE-SEM) ile karakterize edilmiştir. Bu çalışma slot-die tekniğinin kullanıcılar tarafından daha iyi anlaşılabilmesi ve çeşitli optoelektronik uygulamalarda farklı malzemelerin de bu teknik ile büyük ölçekli olarak üretilmesi konusunda önemli bir yol haritası sunmaktadır.

References

  • [1] Sönmezoğlu, S., Koç, M. ve Akın, S. (2012). İnce film üretim teknikleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(5), 389-401.
  • [2] Çalışkan, M. D. (2014). Yeni Nesil İnce Filmler ile Optoelektronik Uygulamaların Araştırılması. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [3] Selvaraj, S. K. (2015). Atomic Layer Deposition of Metal Oxides for Emerging Applications. Doctoral Dissertation, Illinois University, Chicago, Illinois.
  • [4] Özyurt Kuş, F. (2010). Bakır Oksit/Çinko Oksit Heteroeklem Yapıların Elektriksel ve Optiksel Özelliklerinin İncelenmesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [5] Bilgin, V., (2003). ZnO Filmlerinin Elektrik, Optik, Yapıs al ve Yüzeysel Özellikleri Üzerine Kalay Katkısının Etkisi, Doktora Tezi, Osmangazi Üniversitesi, Eskişehir.
  • [6] Pejova, B., et al., (2006). Structural and Optical Properties of Chemically Deposited Thin Films of Quantum-Sized Bismuth (III) Sulfide, Materials Chemistry and Physics, 99, 39–49.
  • [7] Horzum, Ş., (2005). Kimyasal Olarak Kaplanmış CuO2 İnce Filmlerin Yapısal, Elektriksel ve Optiksel Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [8] Eckertova, L. (1986). Pysics of Thin Films, s. 340, Plenum Press, New York and London.
  • [9] Hass, G., Thun, R.E. (1969). Physics of Thin Films Advances in Research and Development, s. 341, Acedemic Press, USA.
  • [10] Gao, L., Huang, K., Long, C., Zeng, F., Liu, B., Yang, J. (2020). Fully slot die coated perovskite solar cells in ambient condition. Applied Physics A. 126:452.
  • [11] Mattox, D. (2010). Handbook of Physical Vapor Deposition (PVD) Processing, William Andrew, 792.
  • [12] Dobkin, D. M., Zuraw, M. K. (2010). Principles of Chemical Vapor Deposition, Springer, s. 284.
  • [13] Jeffrey, B .C., George, W. (1990). Gulf Professional Publishing, 908.
  • [14] Smith, D. (1995). Thin-Film Deposition: Principles and Practice, McGraw-Hill Professional, s. 616.
  • [15] Tang, S., Deng, Y., Zheng, X., Bai, Y., Fang, Y., Dong, Q., Wei, H., Huang, J. (2017). Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302.
  • [16] Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., Huang, J. (2015). Scalable fabrication of efcient organo lead trihalide perovskite solar cells with doctor-blade dactive layers. Energy Environ. Sci. 8, 1544–1550.
  • [17] Wu, H., Zhang, C., Ding, K., Wang, L., Gao, Y., Yang, J. (2017). Efcient planar heterojunction perovskite solar cells fabricated by insitu thermal-annealing doctor blading in ambient condition. Org. Electron. 45, 302–307.
  • [18] Adnan, M., Lee, J. K. (2018). All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells, Scientific Reports, 8, 2168.
  • [19] Barrows, A., Pearson, A., Kwak, C., Dunbar, A., Buckley, A., Lidzey, D. (2014). Efcient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950.
  • [20] Das, S., Yang, B., Gu, G., Joshi, P., Ivanov, I., Rouleau, C., Aytug, T., Geohegan, D., Xiao, K. (2015). High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics 2, 680–686.
  • [21] Huang, H., Shi, J., Zhu, L., Li, D., Luo, Y., Meng, Q. (2016). Two-step ultrasonic spray deposition of CH3NH3PbI3 for efcient and large-area perovskite solar cell. Nano Energy 27, 352–358.
  • [22] Rong, Y., Ming, Y., Ji, W., Li, D., Mei, A., Hu, Y., Han, H. (2018). Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. J. Phys. Chem. Lett. 9, 2707–2713.
  • [23] Krebs, F., Fyenbo, J., Jørgensen, M. (2010). Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufactureus ingfexo graphic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 20, 8994–9001.
  • [24] Krebs, F. (2009). Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93, 465–475.
  • [25] Kim, J., Jung, Y., Heo, Y., Hwang, K., Qin, T., Kim, D., Vak, D. (2018). Slot-die coated planar perovskite solar cells via blowing and heating assiste done step deposition. Sol. Energy Mater. Sol. Cells 179, 80–86.
  • [26] Hwang, K., Jung, Y., Heo, Y., Scholes, F., Watkins, S., Jones, D., Subbiah, J., Kim, D., Vak, D. (2015). Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247.
  • [27] Zuo, C., Vak, D., Angmo, D., Ding, L., Gao, M. (2018). One-step roll-to-roll air processed high efciency perovskite solar cells. Nano Energy 46, 185–192. [28] Cotella, G., Baker, J., Worsley, D., Rossi, F., Pleydell-Pearce, C., Carnie, M., Watson, T. (2017). One-step deposition by slot-die coting of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 159, 362–369.
  • [29] Bu, T., Zheng, J., Chen, W., Wen, X., Ku, Z., Peng, Y., Zhong, J., Cheng, Y., Huang, F. (2018). Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efcient flexible perovskite solar module. Nat. Commun. 9, 4609.
  • [30] Zhang, C., Luo, Q., Wu, H., Li, H., Lai, J., Ji, G., Yan, L., Wang, X., Zhang, D., Lin, J., Chen, L., Yang, J., Ma, C. (2017). Roll-to-roll micro-gravure printed large-area zinc oxide thin flm as the electron transport layer for solution-processed polymer solar cells. Org. Electron. 45, 190–197.
  • [31] Kim, G., Shin, D., Lee, J., Park, J. (2019). Efect of surface morphology of slot-die heads on roll-to-roll coatings of fne PEDOT:PSS stripes. Org. Electron. 66, 116–125.
  • [32] Galagan, Y., Giacomo, F., Gorter, H., Kirchner, G., Vries, I., Andriessen, R., Groen, P. (2018). Roll-to-roll slot-die coated perovskite for efcient flexible solar cells. Adv. Energy Mater. 8, 1801935.
  • [33] Hu, Q., Wu, H., Sun, J., Yan, D., Gao, Y., Yang, J. (2016). Large-area perovskite nano wire arrays fabricated by large-scale roll-to-roll micro gravure printing and doctor-blading. Nanoscale 8, 5350–5357.
  • [34] Ding, X., Didari, S., Fuller, T. F, Harris, T.A.L. (2012). Membrane electrode assembly fabrication process for directly coating catalyzed gas diffusion layers. J Electrochem Soc.159:B,746–B753.
  • [35] Bhamidipati, K. L., Harris, T. A. L. (2010). Numerical simulation of a high temperature polymer electrolyte membrane fabrication process. J Fuel Cell Sci Technol. 7(6):061005 (061007 pp.).
  • [36] Schmitt, M., Baunach, M., Wengeler, L., Peters, K., Junges, P., Scharfer, P., Schabel, W. (2013). Slot-die processing of lithium-ion battery electrodes-coating window characterization. Chem Eng Process. 68:32–37.
  • [37] Schmitt, M., Scharfer, P., Schabel, W. (2014). Slot die coating of lithium-ion battery electrodes: investigations on edge effect issues for stripe and pattern coatings. J Coating Tech Res. 11(1):57–63.
  • [38] Akın, S., Arora, N., Zakeeruddın, S., M, et al. (2020). New strategies for defect passivation in high-efficiency perovskite solar cells. Advanced Energy Materials, 10(13):1903090.
  • [39] Seo, J. Y., Akin, S., Zalibera, M., Preciado, M. A. R., Kim, H. S., Zakeeruddin, S. M., Millc, J. V., Gratzel, M. (2021). Adv. Funct. Mater. 31, 202102124.
  • [40] Akın, S. (2019). Hysteresis-free planar perovskite solar cells with a breakthrough efficiency of 22% and superior operational stability over 2000h, ACS Appl. Mater. Interfaces, 11, pp. 39998-40005.
  • [41] Kojima, A., Teshina, K., Shirai, Y., Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051.
  • [42] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efciencies.20191106.pdf Fig.4a Stabilized power out put of PSC fabricated via fully slot-die coating with both DMSO and additives. The corresponding J–V curve is shown in Fig. 3f. b EQE spectrum and integrated Jsc of this typical device Fully slot-die-coated perovskite solar cells in ambient condition 1 3 Page 7 of 7 452.
  • [43] Kim, Y., Park, E., Yang, T., Noh, J., Shin, T., Jeon, N., Seo, J. (2018). Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. J. Mater. Chem. A. 6, 12447–12454. [44] Whitaker, J., Kim, D., Larson, B., Zhang, F., Berry, J., Zhu, K. (2018). Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels. 2, 2242–2249.
  • [45] Huang, K., Wang, C., Zhang, C., Tong, S., Li, H., Liu, B., Gao, Y., Dong, Y., Gao, Y., Peng, Y., Yang, J. (2018). Efcient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Org. Electron. 55, 140–145. [46] Peng, Y., Cheng, Y., Wang, C., Zhang, C., Xia, H., Huang, K., Tong, S., Yang, J. (2018). F ully doctor-bladed planar heterojunction perovskite solar cell sunder ambient condition. Org. Electron. 58, 153–158.
  • [47] Li, F., Shen, Z., Weng, Y., Lou, Q., Chen, C., Shen, L., Guo, W., Li, G. (2020). Novel Electron Transport Layer Material for Perovskite Solar Cells with Over 22 % Efficiency and Long-Term Stability. Advanced Functional Materials 30:45, 2004933.

The Production and Optimization of SnO2 Electron Transporting Layer by Slot-Die Technique

Year 2022, , 170 - 182, 28.06.2022
https://doi.org/10.46460/ijiea.1086169

Abstract

Thin films forming the basis of the micro and nano structured optoelectronic industry are one of the most studied research topics and have an important place in technological and scientific research. Although there has been a rapid development in the production of semiconductor metal oxides in recent years, thin films are mostly prepared by spin-coater technique, which is not very suitable for large-scale production. In this study, SnO2 metal oxide material, a highly required material by many optoelectronic device technologies, was produced in commercial sizes, with appropriate thickness and good morphological/optical properties by slot-die coating technique with a detailed optimization processes. By changing various parameters such as solution concentration, head-substrate distance, dispense rate, coating speed, table temperature on the existing slot-die system, the most suitable coating parameters were determined in ambient conditions. SnO2 thin films were successfully coated on large area (25 x 75 mm) substrates by facile and economical slot-die technique under optimum conditions and compared with the films produced by the widely used spin coating technique. Optical characterizations of the ensuing thin films were performed using UV-Vis and photoluminescence (PL) spectrophotometers. Surface and cross-sectional morphology was analyzed by field emission scanning electron microscopy (FE-SEM). This study provides an important roadmap for the deep understanding of the slot-die technique by users and the large-scale production of different materials in various optoelectronic applications.

References

  • [1] Sönmezoğlu, S., Koç, M. ve Akın, S. (2012). İnce film üretim teknikleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(5), 389-401.
  • [2] Çalışkan, M. D. (2014). Yeni Nesil İnce Filmler ile Optoelektronik Uygulamaların Araştırılması. Doktora Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [3] Selvaraj, S. K. (2015). Atomic Layer Deposition of Metal Oxides for Emerging Applications. Doctoral Dissertation, Illinois University, Chicago, Illinois.
  • [4] Özyurt Kuş, F. (2010). Bakır Oksit/Çinko Oksit Heteroeklem Yapıların Elektriksel ve Optiksel Özelliklerinin İncelenmesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [5] Bilgin, V., (2003). ZnO Filmlerinin Elektrik, Optik, Yapıs al ve Yüzeysel Özellikleri Üzerine Kalay Katkısının Etkisi, Doktora Tezi, Osmangazi Üniversitesi, Eskişehir.
  • [6] Pejova, B., et al., (2006). Structural and Optical Properties of Chemically Deposited Thin Films of Quantum-Sized Bismuth (III) Sulfide, Materials Chemistry and Physics, 99, 39–49.
  • [7] Horzum, Ş., (2005). Kimyasal Olarak Kaplanmış CuO2 İnce Filmlerin Yapısal, Elektriksel ve Optiksel Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • [8] Eckertova, L. (1986). Pysics of Thin Films, s. 340, Plenum Press, New York and London.
  • [9] Hass, G., Thun, R.E. (1969). Physics of Thin Films Advances in Research and Development, s. 341, Acedemic Press, USA.
  • [10] Gao, L., Huang, K., Long, C., Zeng, F., Liu, B., Yang, J. (2020). Fully slot die coated perovskite solar cells in ambient condition. Applied Physics A. 126:452.
  • [11] Mattox, D. (2010). Handbook of Physical Vapor Deposition (PVD) Processing, William Andrew, 792.
  • [12] Dobkin, D. M., Zuraw, M. K. (2010). Principles of Chemical Vapor Deposition, Springer, s. 284.
  • [13] Jeffrey, B .C., George, W. (1990). Gulf Professional Publishing, 908.
  • [14] Smith, D. (1995). Thin-Film Deposition: Principles and Practice, McGraw-Hill Professional, s. 616.
  • [15] Tang, S., Deng, Y., Zheng, X., Bai, Y., Fang, Y., Dong, Q., Wei, H., Huang, J. (2017). Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302.
  • [16] Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., Huang, J. (2015). Scalable fabrication of efcient organo lead trihalide perovskite solar cells with doctor-blade dactive layers. Energy Environ. Sci. 8, 1544–1550.
  • [17] Wu, H., Zhang, C., Ding, K., Wang, L., Gao, Y., Yang, J. (2017). Efcient planar heterojunction perovskite solar cells fabricated by insitu thermal-annealing doctor blading in ambient condition. Org. Electron. 45, 302–307.
  • [18] Adnan, M., Lee, J. K. (2018). All sequential dip-coating processed perovskite layers from an aqueous lead precursor for high efficiency perovskite solar cells, Scientific Reports, 8, 2168.
  • [19] Barrows, A., Pearson, A., Kwak, C., Dunbar, A., Buckley, A., Lidzey, D. (2014). Efcient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7, 2944–2950.
  • [20] Das, S., Yang, B., Gu, G., Joshi, P., Ivanov, I., Rouleau, C., Aytug, T., Geohegan, D., Xiao, K. (2015). High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing. ACS Photonics 2, 680–686.
  • [21] Huang, H., Shi, J., Zhu, L., Li, D., Luo, Y., Meng, Q. (2016). Two-step ultrasonic spray deposition of CH3NH3PbI3 for efcient and large-area perovskite solar cell. Nano Energy 27, 352–358.
  • [22] Rong, Y., Ming, Y., Ji, W., Li, D., Mei, A., Hu, Y., Han, H. (2018). Toward industrial-scale production of perovskite solar cells: screen printing, slot-die coating, and emerging techniques. J. Phys. Chem. Lett. 9, 2707–2713.
  • [23] Krebs, F., Fyenbo, J., Jørgensen, M. (2010). Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufactureus ingfexo graphic printing, slot-die coating and rotary screen printing. J. Mater. Chem. 20, 8994–9001.
  • [24] Krebs, F. (2009). Polymer solar cell modules prepared using roll-to-roll methods: Knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93, 465–475.
  • [25] Kim, J., Jung, Y., Heo, Y., Hwang, K., Qin, T., Kim, D., Vak, D. (2018). Slot-die coated planar perovskite solar cells via blowing and heating assiste done step deposition. Sol. Energy Mater. Sol. Cells 179, 80–86.
  • [26] Hwang, K., Jung, Y., Heo, Y., Scholes, F., Watkins, S., Jones, D., Subbiah, J., Kim, D., Vak, D. (2015). Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27, 1241–1247.
  • [27] Zuo, C., Vak, D., Angmo, D., Ding, L., Gao, M. (2018). One-step roll-to-roll air processed high efciency perovskite solar cells. Nano Energy 46, 185–192. [28] Cotella, G., Baker, J., Worsley, D., Rossi, F., Pleydell-Pearce, C., Carnie, M., Watson, T. (2017). One-step deposition by slot-die coting of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 159, 362–369.
  • [29] Bu, T., Zheng, J., Chen, W., Wen, X., Ku, Z., Peng, Y., Zhong, J., Cheng, Y., Huang, F. (2018). Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efcient flexible perovskite solar module. Nat. Commun. 9, 4609.
  • [30] Zhang, C., Luo, Q., Wu, H., Li, H., Lai, J., Ji, G., Yan, L., Wang, X., Zhang, D., Lin, J., Chen, L., Yang, J., Ma, C. (2017). Roll-to-roll micro-gravure printed large-area zinc oxide thin flm as the electron transport layer for solution-processed polymer solar cells. Org. Electron. 45, 190–197.
  • [31] Kim, G., Shin, D., Lee, J., Park, J. (2019). Efect of surface morphology of slot-die heads on roll-to-roll coatings of fne PEDOT:PSS stripes. Org. Electron. 66, 116–125.
  • [32] Galagan, Y., Giacomo, F., Gorter, H., Kirchner, G., Vries, I., Andriessen, R., Groen, P. (2018). Roll-to-roll slot-die coated perovskite for efcient flexible solar cells. Adv. Energy Mater. 8, 1801935.
  • [33] Hu, Q., Wu, H., Sun, J., Yan, D., Gao, Y., Yang, J. (2016). Large-area perovskite nano wire arrays fabricated by large-scale roll-to-roll micro gravure printing and doctor-blading. Nanoscale 8, 5350–5357.
  • [34] Ding, X., Didari, S., Fuller, T. F, Harris, T.A.L. (2012). Membrane electrode assembly fabrication process for directly coating catalyzed gas diffusion layers. J Electrochem Soc.159:B,746–B753.
  • [35] Bhamidipati, K. L., Harris, T. A. L. (2010). Numerical simulation of a high temperature polymer electrolyte membrane fabrication process. J Fuel Cell Sci Technol. 7(6):061005 (061007 pp.).
  • [36] Schmitt, M., Baunach, M., Wengeler, L., Peters, K., Junges, P., Scharfer, P., Schabel, W. (2013). Slot-die processing of lithium-ion battery electrodes-coating window characterization. Chem Eng Process. 68:32–37.
  • [37] Schmitt, M., Scharfer, P., Schabel, W. (2014). Slot die coating of lithium-ion battery electrodes: investigations on edge effect issues for stripe and pattern coatings. J Coating Tech Res. 11(1):57–63.
  • [38] Akın, S., Arora, N., Zakeeruddın, S., M, et al. (2020). New strategies for defect passivation in high-efficiency perovskite solar cells. Advanced Energy Materials, 10(13):1903090.
  • [39] Seo, J. Y., Akin, S., Zalibera, M., Preciado, M. A. R., Kim, H. S., Zakeeruddin, S. M., Millc, J. V., Gratzel, M. (2021). Adv. Funct. Mater. 31, 202102124.
  • [40] Akın, S. (2019). Hysteresis-free planar perovskite solar cells with a breakthrough efficiency of 22% and superior operational stability over 2000h, ACS Appl. Mater. Interfaces, 11, pp. 39998-40005.
  • [41] Kojima, A., Teshina, K., Shirai, Y., Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051.
  • [42] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efciencies.20191106.pdf Fig.4a Stabilized power out put of PSC fabricated via fully slot-die coating with both DMSO and additives. The corresponding J–V curve is shown in Fig. 3f. b EQE spectrum and integrated Jsc of this typical device Fully slot-die-coated perovskite solar cells in ambient condition 1 3 Page 7 of 7 452.
  • [43] Kim, Y., Park, E., Yang, T., Noh, J., Shin, T., Jeon, N., Seo, J. (2018). Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. J. Mater. Chem. A. 6, 12447–12454. [44] Whitaker, J., Kim, D., Larson, B., Zhang, F., Berry, J., Zhu, K. (2018). Scalable slot-die coating of high performance perovskite solar cells. Sustain. Energy Fuels. 2, 2242–2249.
  • [45] Huang, K., Wang, C., Zhang, C., Tong, S., Li, H., Liu, B., Gao, Y., Dong, Y., Gao, Y., Peng, Y., Yang, J. (2018). Efcient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Org. Electron. 55, 140–145. [46] Peng, Y., Cheng, Y., Wang, C., Zhang, C., Xia, H., Huang, K., Tong, S., Yang, J. (2018). F ully doctor-bladed planar heterojunction perovskite solar cell sunder ambient condition. Org. Electron. 58, 153–158.
  • [47] Li, F., Shen, Z., Weng, Y., Lou, Q., Chen, C., Shen, L., Guo, W., Li, G. (2020). Novel Electron Transport Layer Material for Perovskite Solar Cells with Over 22 % Efficiency and Long-Term Stability. Advanced Functional Materials 30:45, 2004933.
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Ebiç 0000-0002-1280-4052

Şerife Akar 0000-0003-1267-4566

Erdi Akman 0000-0002-2626-4050

Faruk Özel 0000-0002-3689-0469

Seckin Akin 0000-0001-9852-7246

Publication Date June 28, 2022
Submission Date March 11, 2022
Published in Issue Year 2022

Cite

APA Ebiç, M., Akar, Ş., Akman, E., Özel, F., et al. (2022). SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. International Journal of Innovative Engineering Applications, 6(1), 170-182. https://doi.org/10.46460/ijiea.1086169
AMA Ebiç M, Akar Ş, Akman E, Özel F, Akin S. SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. ijiea, IJIEA. June 2022;6(1):170-182. doi:10.46460/ijiea.1086169
Chicago Ebiç, Murat, Şerife Akar, Erdi Akman, Faruk Özel, and Seckin Akin. “SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği Ile Üretimi Ve Optimizasyonu”. International Journal of Innovative Engineering Applications 6, no. 1 (June 2022): 170-82. https://doi.org/10.46460/ijiea.1086169.
EndNote Ebiç M, Akar Ş, Akman E, Özel F, Akin S (June 1, 2022) SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. International Journal of Innovative Engineering Applications 6 1 170–182.
IEEE M. Ebiç, Ş. Akar, E. Akman, F. Özel, and S. Akin, “SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu”, ijiea, IJIEA, vol. 6, no. 1, pp. 170–182, 2022, doi: 10.46460/ijiea.1086169.
ISNAD Ebiç, Murat et al. “SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği Ile Üretimi Ve Optimizasyonu”. International Journal of Innovative Engineering Applications 6/1 (June 2022), 170-182. https://doi.org/10.46460/ijiea.1086169.
JAMA Ebiç M, Akar Ş, Akman E, Özel F, Akin S. SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. ijiea, IJIEA. 2022;6:170–182.
MLA Ebiç, Murat et al. “SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği Ile Üretimi Ve Optimizasyonu”. International Journal of Innovative Engineering Applications, vol. 6, no. 1, 2022, pp. 170-82, doi:10.46460/ijiea.1086169.
Vancouver Ebiç M, Akar Ş, Akman E, Özel F, Akin S. SnO2 Elektron Transfer Tabakasının Slot-Die Tekniği ile Üretimi ve Optimizasyonu. ijiea, IJIEA. 2022;6(1):170-82.