Research Article
BibTex RIS Cite

CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine

Year 2023, , 135 - 139, 06.07.2023
https://doi.org/10.46460/ijiea.1202422

Abstract

In this paper, a two-dimensional computational fluid dynamics (CFD) study of Turbofan engine is presented using the ANSYS Fluent program, the navier–stokes equations is used for analysis, including a two-dimensional and symmetrical drawing of both the combustion chamber and in a 1.5 Stage Axial Flow Turbine. A GE-90 turbofan engine nacelle was used with Naca 63-412 type blades were used for the analysis of the flow on the turbine blades. Combustion chamber simulations were carried out using a previous study.
The computational results were compared with other studies on the Exergetic analysis of a GE-21 turbojet engine. The GE-21 engine had a combustion chamber temperature of 2900 K, while the GE-90 engine had a temperature of around 2706 K. The previous study considered the velocity of fluid flow to be 200 m/s, whereas the velocity of flow in this study was 209 m/s as determined in the part of analysis and result.

Thanks

We would like to thank Associate Professor Cahit Gürlek for sharing his knowledge and experience.

References

  • [1] Kerr, C., & Ivey, P. (2002). An overview of the measurement errors associated with gas turbine aeroengine pyrometer systems. Measurement science and technology, 13(6), 873.
  • [2] Willsch, M., Bosselmann, T., & Theune, N. M. (2004, October). New approaches for the monitoring of gas turbine blades and vanes. In Sensors, 2004 IEEE (pp. 20-23). IEEE.
  • [3] Horlock, J. H., & Torbidoni, L. (2006). Turbine blade cooling: the blade temperature distribution. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(4), 343-353.
  • [4] Gao, S., Wang, L., Feng, C., Xiao, Y., & Daniel, K. (2015). Monitoring temperature for gas turbine blade: correction of reflection model. Optical Engineering, 54(6), 065102-065102.
  • [5] Pullan G (2006). Secondary flows and loss caused by blade row interaction in a turbine stage. ASME Journal of Turbomachinery 128:484–491.
  • [6] Chaluvadi VSP, Kalfas AI, Hodson HP, Ohyama H and Watanabe E (2003). Blade row interaction in a high-pressure steam turbine. ASME Journal of Turbomachinery 125:14–24.
  • [7] Serbin, S., Diasamidze, B., Gorbov, V., & Kowalski, J. (2021). Investigations Of the Emission Characteristics Of A Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously On Liquid And Gaseous Fuels. Polish Maritime Research, 28, 85-95.
  • [8] Lei, Z., & Ting, W. (2012). Computational Fluid Dynamics Guided Investigation for Reducing Emissions and Increasing Exergy of the Pyroscrubber in a Petcoke Calcining Facility. Journal of Thermal Science and Engineering Applications, 4(1).
  • [9] Shankar, K. S., Ganesh, M., & Kumar, K. S. (2018, December). Combustion Chamber Analysis Using CFD for Operation Condition. In IOP Conference Series: Materials Science and Engineering (Vol. 455, No. 1, p. 012032). IOP Publishing.
  • [10] Samarasinghe, T., Abeykoon, C., & Turan, A. (2019). Modelling of heat transfer and fluid flow in the hot section of gas turbines used in power generation: A comprehensive survey. International Journal of Energy Research, 43(5), 1647-1669. 2018.
  • [11] Babu Ummiti, M., Sitaram, N., & Prasad, B. V. S. S. S. (2009). Computational investigation of effect of axial spacing on blade row interaction in a 1½ stage axial flow turbine. Engineering Applications of Computational Fluid Mechanics, 3(1), 56-70.
  • [12] Zadghaffari, R., Moghaddas, J. S., & Rahimiahar, Z. (2012). Numerical investigation of a burner configuration to minimize pollutant emissions. APCBEE Procedia, 3, 177-181.
  • [13] Mangra, A. C. (2020, September). Micro gas turbine combustion chamber CFD modelling. In IOP Conference Series: Materials Science and Engineering (Vol. 916, No. 1, p. 012064). IOP Publishing.
  • [14] Mehmert, P. (2023). Residual stress analysis and geometrical tolerances in powder bed fusion and direct energy deposition processes. In Quality Analysis of Additively Manufactured Metals (pp. 429-486). Elsevier.
  • [15] Sharma OP, Pickett GF, Ni RH (1992). Assessment of unsteady flows in turbines. ASME Journal of Turbomachinery 114:79–90.
  • [16] Benim, A. C., Iqbal, S., Meier, W., Joos, F., & Wiedermann, A. (2017). Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor. Applied thermal engineering, 110, 202-212.
  • [17] Fakheri, F., Moghaddas, J., Zadghaffari, R., & Moghaddas, Y. (2012). Application of central composite rotatable design for mixing time analysis in mechanically agitated vessels. Chemical engineering & technology, 35(2), 353-361.
  • [18] Liu, G., Sun, S., Liang, K., Yang, X., An, D., Wen, Q., & Ren, X. (2021). Simulation study on the effect of flue gas on flow field and rotor stress in gas turbines. Energies, 14(19), 6135.

Bir Uçak Turbofan Motorunun Yanma Süreci ve Türbin Üzerine Etkisinin HAD Analizi

Year 2023, , 135 - 139, 06.07.2023
https://doi.org/10.46460/ijiea.1202422

Abstract

Bu bildiride, ANSYS Fluent programı kullanılarak, hem yanma odasının hem de 1.5 Kademeli Eksenel Akış Türbininin iki boyutlu ve simetrik çizimini içeren Turbofan motorunun iki boyutlu hesaplamalı akışkanlar dinamiği (HAD) çalışması sunulmaktadır. Türbin kanatlarındaki akışın analizi için Naca 63-412 tipi kanatlı GE-90 turbofan motor nasel kullanılmıştır. Yanma odası simülasyonları, önceki bir çalışma kullanılarak gerçekleştirilmiştir.
Hesaplama sonuçları, bir GE-21 turbojet motorunun Exergetic analizine ilişkin diğer çalışmalarla karşılaştırıldı. GE-21 motorunun yanma odası sıcaklığı 2900 K, GE-90 motorunun sıcaklığı ise 2706 K civarındaydı. Önceki çalışma, sıvı akış hızının 200 m/s olduğunu, oysa akış hızının 200 m/s olduğunu düşünmüştü. bu çalışma 209 m/s idi.

References

  • [1] Kerr, C., & Ivey, P. (2002). An overview of the measurement errors associated with gas turbine aeroengine pyrometer systems. Measurement science and technology, 13(6), 873.
  • [2] Willsch, M., Bosselmann, T., & Theune, N. M. (2004, October). New approaches for the monitoring of gas turbine blades and vanes. In Sensors, 2004 IEEE (pp. 20-23). IEEE.
  • [3] Horlock, J. H., & Torbidoni, L. (2006). Turbine blade cooling: the blade temperature distribution. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 220(4), 343-353.
  • [4] Gao, S., Wang, L., Feng, C., Xiao, Y., & Daniel, K. (2015). Monitoring temperature for gas turbine blade: correction of reflection model. Optical Engineering, 54(6), 065102-065102.
  • [5] Pullan G (2006). Secondary flows and loss caused by blade row interaction in a turbine stage. ASME Journal of Turbomachinery 128:484–491.
  • [6] Chaluvadi VSP, Kalfas AI, Hodson HP, Ohyama H and Watanabe E (2003). Blade row interaction in a high-pressure steam turbine. ASME Journal of Turbomachinery 125:14–24.
  • [7] Serbin, S., Diasamidze, B., Gorbov, V., & Kowalski, J. (2021). Investigations Of the Emission Characteristics Of A Dual-Fuel Gas Turbine Combustion Chamber Operating Simultaneously On Liquid And Gaseous Fuels. Polish Maritime Research, 28, 85-95.
  • [8] Lei, Z., & Ting, W. (2012). Computational Fluid Dynamics Guided Investigation for Reducing Emissions and Increasing Exergy of the Pyroscrubber in a Petcoke Calcining Facility. Journal of Thermal Science and Engineering Applications, 4(1).
  • [9] Shankar, K. S., Ganesh, M., & Kumar, K. S. (2018, December). Combustion Chamber Analysis Using CFD for Operation Condition. In IOP Conference Series: Materials Science and Engineering (Vol. 455, No. 1, p. 012032). IOP Publishing.
  • [10] Samarasinghe, T., Abeykoon, C., & Turan, A. (2019). Modelling of heat transfer and fluid flow in the hot section of gas turbines used in power generation: A comprehensive survey. International Journal of Energy Research, 43(5), 1647-1669. 2018.
  • [11] Babu Ummiti, M., Sitaram, N., & Prasad, B. V. S. S. S. (2009). Computational investigation of effect of axial spacing on blade row interaction in a 1½ stage axial flow turbine. Engineering Applications of Computational Fluid Mechanics, 3(1), 56-70.
  • [12] Zadghaffari, R., Moghaddas, J. S., & Rahimiahar, Z. (2012). Numerical investigation of a burner configuration to minimize pollutant emissions. APCBEE Procedia, 3, 177-181.
  • [13] Mangra, A. C. (2020, September). Micro gas turbine combustion chamber CFD modelling. In IOP Conference Series: Materials Science and Engineering (Vol. 916, No. 1, p. 012064). IOP Publishing.
  • [14] Mehmert, P. (2023). Residual stress analysis and geometrical tolerances in powder bed fusion and direct energy deposition processes. In Quality Analysis of Additively Manufactured Metals (pp. 429-486). Elsevier.
  • [15] Sharma OP, Pickett GF, Ni RH (1992). Assessment of unsteady flows in turbines. ASME Journal of Turbomachinery 114:79–90.
  • [16] Benim, A. C., Iqbal, S., Meier, W., Joos, F., & Wiedermann, A. (2017). Numerical investigation of turbulent swirling flames with validation in a gas turbine model combustor. Applied thermal engineering, 110, 202-212.
  • [17] Fakheri, F., Moghaddas, J., Zadghaffari, R., & Moghaddas, Y. (2012). Application of central composite rotatable design for mixing time analysis in mechanically agitated vessels. Chemical engineering & technology, 35(2), 353-361.
  • [18] Liu, G., Sun, S., Liang, K., Yang, X., An, D., Wen, Q., & Ren, X. (2021). Simulation study on the effect of flue gas on flow field and rotor stress in gas turbines. Energies, 14(19), 6135.
There are 18 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İbrahim Can 0000-0003-4774-3744

Dogan Engin Alnak 0000-0003-0126-1483

Muhammed Sipahi 0000-0002-8416-0188

Early Pub Date June 30, 2023
Publication Date July 6, 2023
Submission Date November 10, 2022
Published in Issue Year 2023

Cite

APA Can, İ., Alnak, D. E., & Sipahi, M. (2023). CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine. International Journal of Innovative Engineering Applications, 7(1), 135-139. https://doi.org/10.46460/ijiea.1202422
AMA Can İ, Alnak DE, Sipahi M. CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine. ijiea, IJIEA. July 2023;7(1):135-139. doi:10.46460/ijiea.1202422
Chicago Can, İbrahim, Dogan Engin Alnak, and Muhammed Sipahi. “CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine”. International Journal of Innovative Engineering Applications 7, no. 1 (July 2023): 135-39. https://doi.org/10.46460/ijiea.1202422.
EndNote Can İ, Alnak DE, Sipahi M (July 1, 2023) CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine. International Journal of Innovative Engineering Applications 7 1 135–139.
IEEE İ. Can, D. E. Alnak, and M. Sipahi, “CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine”, ijiea, IJIEA, vol. 7, no. 1, pp. 135–139, 2023, doi: 10.46460/ijiea.1202422.
ISNAD Can, İbrahim et al. “CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine”. International Journal of Innovative Engineering Applications 7/1 (July 2023), 135-139. https://doi.org/10.46460/ijiea.1202422.
JAMA Can İ, Alnak DE, Sipahi M. CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine. ijiea, IJIEA. 2023;7:135–139.
MLA Can, İbrahim et al. “CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine”. International Journal of Innovative Engineering Applications, vol. 7, no. 1, 2023, pp. 135-9, doi:10.46460/ijiea.1202422.
Vancouver Can İ, Alnak DE, Sipahi M. CFD Analysis of an Aircraft Turbofan Engine Combustion Process and the Effect on Turbine. ijiea, IJIEA. 2023;7(1):135-9.