Research Article
BibTex RIS Cite

SABİHA GÖKÇEN – TAVŞANTEPE METRO PROJESİ İNŞAATINDA KÖK NEDEN ANALİZİ METODOLOJİSİ KULLANILARAK KAYA DÜŞMESİ TEHLİKESİNİN AZALTILMASI

Year 2024, , 8 - 16, 29.06.2024
https://doi.org/10.46460/ijiea.1375469

Abstract

Bir metro inşaat projesindeki kaya düşmesi olaylarıyla ilişkili işçi yaralanmalarını azaltma çabalarında gerçekçi bir hedef, kaya düşmesi tehlikesi yaratan koşulları değerlendirmektir. İşverenler bu riskleri doğru bir şekilde değerlendirebilmesi ve uygun teknik ve idari kontrolleri uygulayabilmesi durumunda, riskleri daha iyi hafifletebilirler. Bu hedefi başarmak için Kök Neden Analizi (RCA) metodolojisi, risk değerlendirmesi yöntemi olarak düşünülebilir. Etkili bir risk değerlendirme yöntemi, değişken tavan koşullarını gözlemleme ve bunların işçileri ne kadar potansiyel olarak yaralayabileceğini değerlendirme yeteneğini içermelidir. RCA'nın değişen koşullarla ilişkili riskleri önceliklendirme yeteneği, tavanı istikrarlı hale getiren veya malzemenin tavanından düşme riskini azaltan kontrolleri tasarlama, onaylama veya kurma sorumluluğu olan herkes için önemli faydalar sağlar. Bu çalışma, bir metro inşaat projesindeki kaya düşmesi olaylarının risklerini ve nedenlerini RCA metodolojisi kullanarak bir vak'a analizi üzerinden incelemektedir. Bu çalışma, tavanın düşmesi gibi sistem düzeyindeki başarısızlıkları ve zayıflıkları geliştirmeye yardımcı olabilecek bir RCA metodolojisinin kullanımını açıklamaktadır. Ayrıca, mevcut raporlar, kazalara yol açan nedenler inceledi ve balık kılçığı yaklaşımını kullanarak bütün faktörler değerlendirildi. Buna göre, yetersiz eğitim, deneyimsizlik ve uygun olmayan ekipman kullanımı kazaların nedenleri olarak belirlendi. İhmalci davranışlar, güvenlik prosedürlerini izlemede başarısızlıkla birlikte, tehlike kaynaklarından biri olarak belirlendi.

References

  • Shagluf, A., Longstaff, A. P., & Fletcher, S. (2014). Maintenance strategies to reduce downtime due to machine positional errors.
  • Amit, R., & Schoemaker, P. J. (1993). Strategic assets and organizational rent. Strategic management journal, 14(1), 33-46.
  • Al-Najjar, B. (2007). The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company's business. International Journal of Production Economics, 107(1), 260-273.
  • Shaqdan, K., Aran, S., Besheli, L. D., & Abujudeh, H. (2014). Root-cause analysis and health failure mode and effect analysis: two leading techniques in health care quality assessment. Journal of the American College of Radiology, 11(6), 572-579.
  • Wald, H., & Shojania, K. G. (2001). Root cause analysis. Making health care safer: a critical analysis of patient safety practices, 51.
  • Leszak, M., Perry, D. E., & Stoll, D. (2000, June). A case study in root cause defect analysis. In Proceedings of the 22nd international conference on Software engineering (pp. 428-437).
  • Dolansky, M. A., Druschel, K., Helba, M., & Courtney, K. (2013). Nursing student medication errors: a case study using root cause analysis. Journal of professional nursing, 29(2), 102-108.
  • Apostolakis, G. E. (2004). How useful is quantitative risk assessment? Risk Analysis: An International Journal, 24(3), 515-520.
  • Dash, A. K. (2019). Analysis of accidents due to slope failure in Indian opencast coal mines. Current Science, 117(2), 304-308.
  • Abrahamsen, E. B., Røed, W., & Jongejan, R. (2013). A practical approach for the evaluation of acceptable risk in road tunnels. Journal of Risk Research, 16(5), 625-633.
  • Borkovskaya, V., & Passmore, D. (2020, June). Risk reduction strategy and risk management on the basis of quality assessments. In IOP Conference Series: Materials Science and Engineering, 869(6), 1-11.
  • Jayswal, A., Li, X., Zanwar, A., Lou, H. H., & Huang, Y. (2011). A sustainability root cause analysis methodology and its application. Computers & chemical engineering, 35(12), 2786-2798.
  • Sulistiyowati, W. I. W. I. K., & Sari, I. K. A. S. (2018). A new redesign idea for dust filter tool used in gerandong crackers manufacturing process based on root cause analysis (RCA) and design for assembly (DFA) approach. J. Eng. Sci. Technol, 13(5), 1384-1395.
  • Zsidisin, G. A., Ellram, L. M., Carter, J. R., & Cavinato, J. L. (2004). An analysis of supply risk assessment techniques. International Journal of Physical Distribution & Logistics Management, 34(5), 397-413.
  • Sharma, R. K., & Sharma, P. (2010). System failure behavior and maintenance decision making using, RCA, FMEA and FM. Journal of Quality in Maintenance Engineering, 16(1), 64-88.
  • Abdelgawad, M., & Fayek, A. R. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and management, 136(9), 1028-1036.
  • Percarpio, K. B., Watts, B. V., & Weeks, W. B. (2008). The effectiveness of root cause analysis: what does the literature tell us?. The Joint Commission Journal on Quality and Patient Safety, 34(7), 391-398.
  • Benjamin, S. J., Marathamuthu, M. S., & Murugaiah, U. (2015). The use of 5-WHYs technique to eliminate OEE’s speed loss in a manufacturing firm. Journal of Quality in Maintenance Engineering, 21(4), 419-435.
  • York, D., Jin, K., Song, Q., & Li, H. (2014, March). Practical root cause analysis using cause mapping. In Proceedings of the International Multi Conference of Engineers and Computer Scientists (Vol. 2).
  • Cioca, I. L., & Moraru, R. I. (2012). Explosion and/or fire risk assessment methodology: a common approach, structured for underground coalmine environments. Archives of Mining Sciences, 57(1), 53-60.
  • Budiyanto, M. A., & Fernanda, H. (2020). Risk assessment of work accident in container terminals using the fault tree analysis method. Journal of Marine Science and Engineering, 8(6), 466.
  • Shahhossein, V., Afshar, M. R., & Amiri, O. (2018). The root causes of construction project failure. Scientia Iranica, 25(1), 93-108.
  • Hoek, E., & Bray, J. D. (1981). Rock slope engineering. CRC press.
  • Bieniawski, Z. T. (1984). Rock mechanics design in mining and tunneling.
  • Lunardi, G., Cassani, G., Gatti, M., Cullacciati, A., Pini, G. K., & Zenti, C. L. (2017). The application of Semi-Automatic Tubular Arch inside Boscaccio Tunnel: a new concept of primary lining. In Proceedings of ITA-AITES World Tunnel Congress WTC.
  • Esmailzadeh, A., Shirzad, P. J., & Haghshenas, S. S. (2017). Technical analysis of collapse in tunnel excavation and suggestion of preventing appropriate applicable methods (case study: sardasht dam second diversion tunnel). Civ Eng J, 3(9), 682-689.
  • Wang, X. (2020). Safety Problems During Tunnel Excavation in China (Doctoral dissertation, Politecnico di Torino).
  • Aneziris, O. N., Papazoglou, I. A., & Kallianiotis, D. (2010). Occupational risk of tunneling construction. Safety science, 48(8), 964-972.
  • Høien, A. H., & Nilsen, B. (2019). Analysis of the stabilising effect of ribs of reinforced sprayed concrete (RRS) in the Løren road tunnel. Bulletin of Engineering Geology and the Environment, 78, 1777-1793.
  • Erdem, Y., & Solak, T. (Eds.). (2005). Underground Space Use: Analysis of the Past and Lessons for the Future: Proceedings of the 31st ITA-AITES World Tunnel Congress, 7-12 May 2005, Istanbul, Turkey. AA Balkema Publishers.
  • Hage, S., Hubert‐Ferrari, A., Lamair, L., Avşar, U., El Ouahabi, M., Van Daele, M., ... & Plenevaux, A. (2017). Flow dynamics at the origin of thin clayey sand lacustrine turbidites: Examples from Lake Hazar, Turkey. Sedimentology, 64(7), 1929-1956.
  • Mulder, T. (2011). Gravity processes and deposits on continental slope, rise and abyssal plains. In Developments in Sedimentology (Vol. 63, pp. 25-148).
  • Pamukcu, C. (2015). Analysis and management of risks experienced in tunnel construction. Acta Montanistica Slovaca, 20(4).
  • Bernard, E. S., & Thomas, A. H. (2020). Fibre reinforced sprayed concrete for ground support. TAI Journal (A Half Yearly Technical Journal Of Indian Chapter Of TAI), 9(1), 13-33.
  • Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
  • Kasper, T., Edvardsen, C., Wittneben, G., & Neumann, D. (2008). Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments. Tunnelling and Underground Space Technology, 23(5), 574-587.
  • Vandewalle, M. (1998). Use of steel fibre reinforced shotcrete for the support of mine openings. Journal of The South African Institute of Mining and Metallurgy, 98(3), 113-120.
  • King, R. A. (2012). Analysis of crane and lifting accidents in North America from 2004 to 2010 (Doctoral dissertation, Massachusetts Institute of Technology).
  • Niu, S. (2010). Ergonomics and occupational safety and health: An ILO perspective. Applied ergonomics, 41(6), 744-753.

REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY

Year 2024, , 8 - 16, 29.06.2024
https://doi.org/10.46460/ijiea.1375469

Abstract

A realistic goal in efforts to reduce worker injuries related to rockfall incidents is to assess the conditions that create a rockfall hazard. If employers can properly assess the risks of rockfall and implement appropriate technical and administrative controls, they can better mitigate the risks. In order to achieve this goal, the methodology of Root Cause Analysis (RCA) can be considered as a method of risk assessment. An effective risk assessment method should include the ability to observe variable ceiling conditions and assess how much potential they represent for injuring workers. RCA's ability to prioritize the risks associated with changing conditions provides significant benefits to anyone responsible for designing, approving, or installing controls that are reasonably repeatable and stabilize the ceiling or reduce the risk of material falling from the roof. Herein, this study is based on a case analysis of the risks and causes of rock fall incidents in a metro construction project using the RCA methodology. This study explains the use of an RCA methodology that can help improve system-level failures and weaknesses, such as rocks falling from the ceiling of a tunnel. Furthermore, the present report examined the causes that led to the accidents and the predictors/variations were assessed using fishbone approach. Accordingly, inadequate training, lack of experience and the use of inappropriate equipment were identified as the causes of accidents. Careless behavior is also a major source of danger, in addition to failure to follow safety procedures.

References

  • Shagluf, A., Longstaff, A. P., & Fletcher, S. (2014). Maintenance strategies to reduce downtime due to machine positional errors.
  • Amit, R., & Schoemaker, P. J. (1993). Strategic assets and organizational rent. Strategic management journal, 14(1), 33-46.
  • Al-Najjar, B. (2007). The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company's business. International Journal of Production Economics, 107(1), 260-273.
  • Shaqdan, K., Aran, S., Besheli, L. D., & Abujudeh, H. (2014). Root-cause analysis and health failure mode and effect analysis: two leading techniques in health care quality assessment. Journal of the American College of Radiology, 11(6), 572-579.
  • Wald, H., & Shojania, K. G. (2001). Root cause analysis. Making health care safer: a critical analysis of patient safety practices, 51.
  • Leszak, M., Perry, D. E., & Stoll, D. (2000, June). A case study in root cause defect analysis. In Proceedings of the 22nd international conference on Software engineering (pp. 428-437).
  • Dolansky, M. A., Druschel, K., Helba, M., & Courtney, K. (2013). Nursing student medication errors: a case study using root cause analysis. Journal of professional nursing, 29(2), 102-108.
  • Apostolakis, G. E. (2004). How useful is quantitative risk assessment? Risk Analysis: An International Journal, 24(3), 515-520.
  • Dash, A. K. (2019). Analysis of accidents due to slope failure in Indian opencast coal mines. Current Science, 117(2), 304-308.
  • Abrahamsen, E. B., Røed, W., & Jongejan, R. (2013). A practical approach for the evaluation of acceptable risk in road tunnels. Journal of Risk Research, 16(5), 625-633.
  • Borkovskaya, V., & Passmore, D. (2020, June). Risk reduction strategy and risk management on the basis of quality assessments. In IOP Conference Series: Materials Science and Engineering, 869(6), 1-11.
  • Jayswal, A., Li, X., Zanwar, A., Lou, H. H., & Huang, Y. (2011). A sustainability root cause analysis methodology and its application. Computers & chemical engineering, 35(12), 2786-2798.
  • Sulistiyowati, W. I. W. I. K., & Sari, I. K. A. S. (2018). A new redesign idea for dust filter tool used in gerandong crackers manufacturing process based on root cause analysis (RCA) and design for assembly (DFA) approach. J. Eng. Sci. Technol, 13(5), 1384-1395.
  • Zsidisin, G. A., Ellram, L. M., Carter, J. R., & Cavinato, J. L. (2004). An analysis of supply risk assessment techniques. International Journal of Physical Distribution & Logistics Management, 34(5), 397-413.
  • Sharma, R. K., & Sharma, P. (2010). System failure behavior and maintenance decision making using, RCA, FMEA and FM. Journal of Quality in Maintenance Engineering, 16(1), 64-88.
  • Abdelgawad, M., & Fayek, A. R. (2010). Risk management in the construction industry using combined fuzzy FMEA and fuzzy AHP. Journal of Construction Engineering and management, 136(9), 1028-1036.
  • Percarpio, K. B., Watts, B. V., & Weeks, W. B. (2008). The effectiveness of root cause analysis: what does the literature tell us?. The Joint Commission Journal on Quality and Patient Safety, 34(7), 391-398.
  • Benjamin, S. J., Marathamuthu, M. S., & Murugaiah, U. (2015). The use of 5-WHYs technique to eliminate OEE’s speed loss in a manufacturing firm. Journal of Quality in Maintenance Engineering, 21(4), 419-435.
  • York, D., Jin, K., Song, Q., & Li, H. (2014, March). Practical root cause analysis using cause mapping. In Proceedings of the International Multi Conference of Engineers and Computer Scientists (Vol. 2).
  • Cioca, I. L., & Moraru, R. I. (2012). Explosion and/or fire risk assessment methodology: a common approach, structured for underground coalmine environments. Archives of Mining Sciences, 57(1), 53-60.
  • Budiyanto, M. A., & Fernanda, H. (2020). Risk assessment of work accident in container terminals using the fault tree analysis method. Journal of Marine Science and Engineering, 8(6), 466.
  • Shahhossein, V., Afshar, M. R., & Amiri, O. (2018). The root causes of construction project failure. Scientia Iranica, 25(1), 93-108.
  • Hoek, E., & Bray, J. D. (1981). Rock slope engineering. CRC press.
  • Bieniawski, Z. T. (1984). Rock mechanics design in mining and tunneling.
  • Lunardi, G., Cassani, G., Gatti, M., Cullacciati, A., Pini, G. K., & Zenti, C. L. (2017). The application of Semi-Automatic Tubular Arch inside Boscaccio Tunnel: a new concept of primary lining. In Proceedings of ITA-AITES World Tunnel Congress WTC.
  • Esmailzadeh, A., Shirzad, P. J., & Haghshenas, S. S. (2017). Technical analysis of collapse in tunnel excavation and suggestion of preventing appropriate applicable methods (case study: sardasht dam second diversion tunnel). Civ Eng J, 3(9), 682-689.
  • Wang, X. (2020). Safety Problems During Tunnel Excavation in China (Doctoral dissertation, Politecnico di Torino).
  • Aneziris, O. N., Papazoglou, I. A., & Kallianiotis, D. (2010). Occupational risk of tunneling construction. Safety science, 48(8), 964-972.
  • Høien, A. H., & Nilsen, B. (2019). Analysis of the stabilising effect of ribs of reinforced sprayed concrete (RRS) in the Løren road tunnel. Bulletin of Engineering Geology and the Environment, 78, 1777-1793.
  • Erdem, Y., & Solak, T. (Eds.). (2005). Underground Space Use: Analysis of the Past and Lessons for the Future: Proceedings of the 31st ITA-AITES World Tunnel Congress, 7-12 May 2005, Istanbul, Turkey. AA Balkema Publishers.
  • Hage, S., Hubert‐Ferrari, A., Lamair, L., Avşar, U., El Ouahabi, M., Van Daele, M., ... & Plenevaux, A. (2017). Flow dynamics at the origin of thin clayey sand lacustrine turbidites: Examples from Lake Hazar, Turkey. Sedimentology, 64(7), 1929-1956.
  • Mulder, T. (2011). Gravity processes and deposits on continental slope, rise and abyssal plains. In Developments in Sedimentology (Vol. 63, pp. 25-148).
  • Pamukcu, C. (2015). Analysis and management of risks experienced in tunnel construction. Acta Montanistica Slovaca, 20(4).
  • Bernard, E. S., & Thomas, A. H. (2020). Fibre reinforced sprayed concrete for ground support. TAI Journal (A Half Yearly Technical Journal Of Indian Chapter Of TAI), 9(1), 13-33.
  • Mander, J. B., Priestley, M. J., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of structural engineering, 114(8), 1804-1826.
  • Kasper, T., Edvardsen, C., Wittneben, G., & Neumann, D. (2008). Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments. Tunnelling and Underground Space Technology, 23(5), 574-587.
  • Vandewalle, M. (1998). Use of steel fibre reinforced shotcrete for the support of mine openings. Journal of The South African Institute of Mining and Metallurgy, 98(3), 113-120.
  • King, R. A. (2012). Analysis of crane and lifting accidents in North America from 2004 to 2010 (Doctoral dissertation, Massachusetts Institute of Technology).
  • Niu, S. (2010). Ergonomics and occupational safety and health: An ILO perspective. Applied ergonomics, 41(6), 744-753.
There are 39 citations in total.

Details

Primary Language English
Subjects Civil Engineering (Other)
Journal Section Articles
Authors

Okan Özbakır 0000-0001-8997-9451

Early Pub Date June 29, 2024
Publication Date June 29, 2024
Submission Date October 13, 2023
Acceptance Date April 15, 2024
Published in Issue Year 2024

Cite

APA Özbakır, O. (2024). REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY. International Journal of Innovative Engineering Applications, 8(1), 8-16. https://doi.org/10.46460/ijiea.1375469
AMA Özbakır O. REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY. ijiea, IJIEA. June 2024;8(1):8-16. doi:10.46460/ijiea.1375469
Chicago Özbakır, Okan. “REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY”. International Journal of Innovative Engineering Applications 8, no. 1 (June 2024): 8-16. https://doi.org/10.46460/ijiea.1375469.
EndNote Özbakır O (June 1, 2024) REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY. International Journal of Innovative Engineering Applications 8 1 8–16.
IEEE O. Özbakır, “REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY”, ijiea, IJIEA, vol. 8, no. 1, pp. 8–16, 2024, doi: 10.46460/ijiea.1375469.
ISNAD Özbakır, Okan. “REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY”. International Journal of Innovative Engineering Applications 8/1 (June 2024), 8-16. https://doi.org/10.46460/ijiea.1375469.
JAMA Özbakır O. REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY. ijiea, IJIEA. 2024;8:8–16.
MLA Özbakır, Okan. “REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY”. International Journal of Innovative Engineering Applications, vol. 8, no. 1, 2024, pp. 8-16, doi:10.46460/ijiea.1375469.
Vancouver Özbakır O. REDUCING ROCKFALL HAZARDS IN SABIHA GOKÇEN – TAVSANTEPE METRO PROJECT CONSTRUCTION BY USING ROOT CAUSE ANALYSIS METHODOLOGY. ijiea, IJIEA. 2024;8(1):8-16.