Research Article
BibTex RIS Cite

Effect of bismuth addition on the corrosion dynamics of Sn–3Ag–0.5Cu solder alloy in Hydrochloric Acid Solution

Year 2021, , 40 - 44, 28.06.2021
https://doi.org/10.46460/ijiea.911862

Abstract

This paper aims to investigate the effect of bismuth addition on the corrosion behaviour of Sn–3.0Ag–0.5Cu (SAC 305) solder alloy in 1M HCl acid solution under potentiodynamic polarization. After electrochemical tests, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to examine the properties of the samples. Polarization studies indicated that an addition of 0.5, 1, and 2 wt.% Bi in the SAC305 solder alloy doesn't lead to significantly different corrosion potentials. Instead of a true passivation region, a pseudo-passivation region is observed in which currents are nearly constant (though high). This pseudo-passive region does not have a reactivation point within the scanning interval. Corrosion rates, on the other hand, follow a pattern in which 1 wt.% bismuth replacement of silver causes a drop-in corrosion rate. With the further replacement of silver with bismuth, however, the corrosion rate increases. Microstructure analysis reveals the existence of gaps and porosities which introduce limits on the formation and stability of protective passive corrosion products.

References

  • [1] Li,Si., Wang, X., Liu, Y., Zhang, S.,Geng, J., Chen, X., Wu, S., He, P., Long, W., Corrosion behavior of Sn-based lead-free solder alloys: a review, Journal of Materials Science: Materials in Electronics, 31, 9076-9090, 2020.
  • [2] Zaini, N.B.M., Nazeri, M.F.B.M., Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution, AIP Conference Proceedings 1-7, 2016.
  • [3] Jaffery, H.A., Sabri, M.F.M., Said, S.M., Hasan, S.W., Sajid, I.H., Nordin, N.I.M., Hasnan, M.M.I.M., Shnawah, D.A., Morrty, C.V., Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron, Journal of Alloys and Compounds, 810, 151925, 2019.
  • [4] Sun, L., Zhang, L., Properties and microstructures of Sn-Ag-Cu-X lead-free solder joints in electronic packaging, Advances in Materials Science and Engineering,1-16, 2015.
  • [5] Tunthawiroon, P., Kanlayasiri, K., Effects of ag contents in Sn-xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate, Transactions of Nonferrous Metals Society of China, 29, 1696-1704, 2019.
  • [6] Gaharaibeh, A., Felhosi, I., Keresztes, Z., Harsanyi, G., Illes B., Medgyes, B., Electrochemical corrosion of SAC alloys: A Review, Metals, 10, 1276-1294, 2020.
  • [7] Sonawane, P.D., Bupesh Raja, V.K., Gupta, M., Mechanical properties and corrosion analysis of lead-free Sn-0.7Cu solder CSI joints on Cu substrate, Materials Today, Proceedings, 2021.
  • [8] Rosalbino, F., Angelini, E., Zanicci, G., Carlini, R., Marazza, R., Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution, Electrochiminica Acta, 54, 7231-7235, 2009.
  • [9] Mohamed, M.N., Aziz, N.A., Mohamad, A.A., Nazeri, M.F.M., Polarization study of Sn-Zn and Sn-37Pb solders in hydrochloric acid solution, Electroactive Materials, 3, 28-32, 2015.
  • [10] Wang, M., Wang, J., Ke, W., Corrosion behavior of Sn-3Ag-0.5Cu lead-free solder joints, Microelectronics Reliability, 73, 69-75, 2017.
  • [11] Nurwahida, M.Z., Mukridz, M.M., Ahmad, A.M., Muhammad, F.M.N., Corrosion properties of SAC305 solder in different solution of HCl and NaCl, IOP Conference Series: Materials Science and Engineering, 318 (2018), 012004, 1-7, 2017.
  • [12] Fayeka, M., Haseeb, A.S.M.A., Fazal, M.A., Electrochemical corrosion bevaviour of Pb-free SAC105 and SAC305 solder alloys: A Comparative Study, Sains Malaysiana, 46(2), 295-302, 2017.
  • [13] See, C.W., Yahaya, M.Z., Haliman, H., Mohamad, A.A., Corrosion behavior of corroded Sn-3.0Ag-0.5Cu solder alloy, Procedia Chemistry, 19, 847-854, 2016.
  • [14] Erer, A.M., Oguz, S., Wetting characterictic of Sn-(3-x)Ag-0.5Cu-xBi quaternary solder alloy systems, Soldering&Surface Mount Technology, 32(1), 19-23,2020.
  • [15] Oguz, S., Sn-(3-x)Ag-0.5Cu-xBi dörtlü kurşunsuz lehim alaşımlarının ıslatma özelliklerinin Cu altlık üzerinde incelenmesi, Master Thesis, Institute of Science of Karabük University, 78, 2018.
  • [16] El-Taher, A.M., Razzk, A.F., Controlling Ag3Sn plate formation and its effect on the creep resistance of Sn-3.0Ag-0.7Cu lead-free solder by adding minor alloying elements Fe, Co, Te and Bi, Metals and Materials International, 2020.
  • [17] Subri, N.W.B., Sarrf, M., Nasiri-Tabrizi, B., Ali, B., Sabri, M.F.M., Basirun, W.J., Sukiman, N.L., Corrosion insight of iron and bismuth added Sn-1Ag-0.5Cu lead-free solder alloy, Corrosion Engineering, Science and Technology, 55(1), 35-47, 2020.
  • [18] Wang, F., Huang, Y., Zhang, Z., Yan, C., Interfacial reaction and mechanical properties of Sn-Bi Solder joints, Materials, 10, 1-16, 2017.
  • [19] Braga, M.H., Vizdal, J., Kroupa, A., Ferreria, J., Soares, D., Malherios, L.F., The experimental study of the Bi-Sn, Bi-Zn and Bi-Sn-Zn systems, Science Direct, 31, 468-478, 2007.
  • [20] Osório, W.R., Peixoto, L.C., Garcia, L.R., Garcia, A., Spinelli, J.E., The effect of microstructure and Ag3Sn and Cu6Sn5 intermetallics on the electrochemical behavior of Sn-Ag and Sn-Cu solder alloys, Int.J.Electrochem. Sci., 7, 6436-3452, 2012.
  • [21] Chen,G., Wang, X.H., Yang, J., Xu, W.L., Lin, Q., Effect of micromorphology on corrosion and mechanical properties of SAC305 lead-free solders, Microelectronics Reliability, 108, 113634, 2020.
  • [22] Kaushik, R.K., Batra, U., Sharma, J.D., Aging induced structural and electrochemical corrosion behaviour of Sn-1Ag-0.5Cu and Sn-3.8Ag-0.7Cu solder alloys, Journal of Alloys and Compounds, 745, 446-454,2018.
  • [23] Tsao, L.C., Chen, C.W., Corrosion characterization of Cu-Sn intermetallics in 3.5wt% NaCl solution, Corrosion Science, 63, 393-398, 2012.

Hidroklorik Asit çözeltisinde bizmut ilavesinin Sn – 3Ag – 0.5Cu lehim alaşımının korozyon dinamiklerine etkisi

Year 2021, , 40 - 44, 28.06.2021
https://doi.org/10.46460/ijiea.911862

Abstract

Bu makale, bizmut ilavesinin potansiyodinamik polarizasyon altında 1M HCl asit solüsyonunda Sn – 3.0Ag – 0.5Cu (SAC 305) lehim alaşımının korozyon davranışı üzerindeki etkisini araştırmayı amaçlamaktadır. Elektrokimyasal testlerden sonra, numunelerin özelliklerini incelemek için taramalı elektron mikroskobu (SEM) ve enerji dağıtıcı X-ışını spektroskopisi (EDX) kullanılmıştır. Polarizasyon çalışmaları, SAC305 lehim alaşımına ağırlıkça% 0,5, 1 ve 2 Bi ilavesinin önemli ölçüde farklı korozyon potansiyellerine yol açmadığını göstermiştir. Gerçek bir pasivasyon bölgesi yerine, akımların neredeyse sabit olduğu (yüksek olsa da) sözde pasivasyon bölgesi gözlenmiştir. Bu sözde pasif bölge, tarama aralığı içinde bir yeniden etkinleştirme noktasına sahip değildir. Öte yandan, korozyon oranları, gümüşün ağırlıkça% 1 bizmut ikamesinin korozyon oranının düşmesine neden olduğu bir modeli takip eder. Gümüşün bizmutla daha fazla yer değiştirmesi ile korozyon hızı artar. Mikroyapı analizi, koruyucu pasif korozyon ürünlerinin oluşumuna ve stabilitesine sınırlar getiren boşlukların ve gözeneklerin varlığını ortaya koymaktadır.

References

  • [1] Li,Si., Wang, X., Liu, Y., Zhang, S.,Geng, J., Chen, X., Wu, S., He, P., Long, W., Corrosion behavior of Sn-based lead-free solder alloys: a review, Journal of Materials Science: Materials in Electronics, 31, 9076-9090, 2020.
  • [2] Zaini, N.B.M., Nazeri, M.F.B.M., Potentiodynamic polarization effect on phase and microstructure of SAC305 solder in hydrochloric acid solution, AIP Conference Proceedings 1-7, 2016.
  • [3] Jaffery, H.A., Sabri, M.F.M., Said, S.M., Hasan, S.W., Sajid, I.H., Nordin, N.I.M., Hasnan, M.M.I.M., Shnawah, D.A., Morrty, C.V., Electrochemical corrosion behavior of Sn-0.7Cu solder alloy with the addition of bismuth and iron, Journal of Alloys and Compounds, 810, 151925, 2019.
  • [4] Sun, L., Zhang, L., Properties and microstructures of Sn-Ag-Cu-X lead-free solder joints in electronic packaging, Advances in Materials Science and Engineering,1-16, 2015.
  • [5] Tunthawiroon, P., Kanlayasiri, K., Effects of ag contents in Sn-xAg lead-free solders on microstructure, corrosion behavior and interfacial reaction with Cu substrate, Transactions of Nonferrous Metals Society of China, 29, 1696-1704, 2019.
  • [6] Gaharaibeh, A., Felhosi, I., Keresztes, Z., Harsanyi, G., Illes B., Medgyes, B., Electrochemical corrosion of SAC alloys: A Review, Metals, 10, 1276-1294, 2020.
  • [7] Sonawane, P.D., Bupesh Raja, V.K., Gupta, M., Mechanical properties and corrosion analysis of lead-free Sn-0.7Cu solder CSI joints on Cu substrate, Materials Today, Proceedings, 2021.
  • [8] Rosalbino, F., Angelini, E., Zanicci, G., Carlini, R., Marazza, R., Electrochemical corrosion study of Sn-3Ag-3Cu solder alloy in NaCl solution, Electrochiminica Acta, 54, 7231-7235, 2009.
  • [9] Mohamed, M.N., Aziz, N.A., Mohamad, A.A., Nazeri, M.F.M., Polarization study of Sn-Zn and Sn-37Pb solders in hydrochloric acid solution, Electroactive Materials, 3, 28-32, 2015.
  • [10] Wang, M., Wang, J., Ke, W., Corrosion behavior of Sn-3Ag-0.5Cu lead-free solder joints, Microelectronics Reliability, 73, 69-75, 2017.
  • [11] Nurwahida, M.Z., Mukridz, M.M., Ahmad, A.M., Muhammad, F.M.N., Corrosion properties of SAC305 solder in different solution of HCl and NaCl, IOP Conference Series: Materials Science and Engineering, 318 (2018), 012004, 1-7, 2017.
  • [12] Fayeka, M., Haseeb, A.S.M.A., Fazal, M.A., Electrochemical corrosion bevaviour of Pb-free SAC105 and SAC305 solder alloys: A Comparative Study, Sains Malaysiana, 46(2), 295-302, 2017.
  • [13] See, C.W., Yahaya, M.Z., Haliman, H., Mohamad, A.A., Corrosion behavior of corroded Sn-3.0Ag-0.5Cu solder alloy, Procedia Chemistry, 19, 847-854, 2016.
  • [14] Erer, A.M., Oguz, S., Wetting characterictic of Sn-(3-x)Ag-0.5Cu-xBi quaternary solder alloy systems, Soldering&Surface Mount Technology, 32(1), 19-23,2020.
  • [15] Oguz, S., Sn-(3-x)Ag-0.5Cu-xBi dörtlü kurşunsuz lehim alaşımlarının ıslatma özelliklerinin Cu altlık üzerinde incelenmesi, Master Thesis, Institute of Science of Karabük University, 78, 2018.
  • [16] El-Taher, A.M., Razzk, A.F., Controlling Ag3Sn plate formation and its effect on the creep resistance of Sn-3.0Ag-0.7Cu lead-free solder by adding minor alloying elements Fe, Co, Te and Bi, Metals and Materials International, 2020.
  • [17] Subri, N.W.B., Sarrf, M., Nasiri-Tabrizi, B., Ali, B., Sabri, M.F.M., Basirun, W.J., Sukiman, N.L., Corrosion insight of iron and bismuth added Sn-1Ag-0.5Cu lead-free solder alloy, Corrosion Engineering, Science and Technology, 55(1), 35-47, 2020.
  • [18] Wang, F., Huang, Y., Zhang, Z., Yan, C., Interfacial reaction and mechanical properties of Sn-Bi Solder joints, Materials, 10, 1-16, 2017.
  • [19] Braga, M.H., Vizdal, J., Kroupa, A., Ferreria, J., Soares, D., Malherios, L.F., The experimental study of the Bi-Sn, Bi-Zn and Bi-Sn-Zn systems, Science Direct, 31, 468-478, 2007.
  • [20] Osório, W.R., Peixoto, L.C., Garcia, L.R., Garcia, A., Spinelli, J.E., The effect of microstructure and Ag3Sn and Cu6Sn5 intermetallics on the electrochemical behavior of Sn-Ag and Sn-Cu solder alloys, Int.J.Electrochem. Sci., 7, 6436-3452, 2012.
  • [21] Chen,G., Wang, X.H., Yang, J., Xu, W.L., Lin, Q., Effect of micromorphology on corrosion and mechanical properties of SAC305 lead-free solders, Microelectronics Reliability, 108, 113634, 2020.
  • [22] Kaushik, R.K., Batra, U., Sharma, J.D., Aging induced structural and electrochemical corrosion behaviour of Sn-1Ag-0.5Cu and Sn-3.8Ag-0.7Cu solder alloys, Journal of Alloys and Compounds, 745, 446-454,2018.
  • [23] Tsao, L.C., Chen, C.W., Corrosion characterization of Cu-Sn intermetallics in 3.5wt% NaCl solution, Corrosion Science, 63, 393-398, 2012.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ahmet Mustafa Erer 0000-0003-4358-4010

Publication Date June 28, 2021
Submission Date April 8, 2021
Published in Issue Year 2021

Cite

APA Erer, A. M. (2021). Effect of bismuth addition on the corrosion dynamics of Sn–3Ag–0.5Cu solder alloy in Hydrochloric Acid Solution. International Journal of Innovative Engineering Applications, 5(1), 40-44. https://doi.org/10.46460/ijiea.911862
AMA Erer AM. Effect of bismuth addition on the corrosion dynamics of Sn–3Ag–0.5Cu solder alloy in Hydrochloric Acid Solution. ijiea, IJIEA. June 2021;5(1):40-44. doi:10.46460/ijiea.911862
Chicago Erer, Ahmet Mustafa. “Effect of Bismuth Addition on the Corrosion Dynamics of Sn–3Ag–0.5Cu Solder Alloy in Hydrochloric Acid Solution”. International Journal of Innovative Engineering Applications 5, no. 1 (June 2021): 40-44. https://doi.org/10.46460/ijiea.911862.
EndNote Erer AM (June 1, 2021) Effect of bismuth addition on the corrosion dynamics of Sn–3Ag–0.5Cu solder alloy in Hydrochloric Acid Solution. International Journal of Innovative Engineering Applications 5 1 40–44.
IEEE A. M. Erer, “Effect of bismuth addition on the corrosion dynamics of Sn–3Ag–0.5Cu solder alloy in Hydrochloric Acid Solution”, ijiea, IJIEA, vol. 5, no. 1, pp. 40–44, 2021, doi: 10.46460/ijiea.911862.
ISNAD Erer, Ahmet Mustafa. “Effect of Bismuth Addition on the Corrosion Dynamics of Sn–3Ag–0.5Cu Solder Alloy in Hydrochloric Acid Solution”. International Journal of Innovative Engineering Applications 5/1 (June 2021), 40-44. https://doi.org/10.46460/ijiea.911862.
JAMA Erer AM. Effect of bismuth addition on the corrosion dynamics of Sn–3Ag–0.5Cu solder alloy in Hydrochloric Acid Solution. ijiea, IJIEA. 2021;5:40–44.
MLA Erer, Ahmet Mustafa. “Effect of Bismuth Addition on the Corrosion Dynamics of Sn–3Ag–0.5Cu Solder Alloy in Hydrochloric Acid Solution”. International Journal of Innovative Engineering Applications, vol. 5, no. 1, 2021, pp. 40-44, doi:10.46460/ijiea.911862.
Vancouver Erer AM. Effect of bismuth addition on the corrosion dynamics of Sn–3Ag–0.5Cu solder alloy in Hydrochloric Acid Solution. ijiea, IJIEA. 2021;5(1):40-4.